K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt sina=a; cosa=b

Theo đề, ta có: \(\left\{{}\begin{matrix}a+b=1.4\\a^2+b^2=1\end{matrix}\right.\Leftrightarrow ab=\dfrac{1.4^2-1}{2}=0.48\)

=>a,b là các nghiệm của pt là:

\(x^2-1.4x+0.48=0\)

=>x=0,6 hoặc x=0,8

=>(a,b)=(0,6;0,8) hoặc (a,b)=(0,8;0,6)

TH1: a=0,6; b=0,8

tan a=a/b=3/4

TH2: a=0,8; b=0,6

tan a=a/b=4/3

AH
Akai Haruma
Giáo viên
18 tháng 7 2018

Lời giải:

Ta có: \(\left\{\begin{matrix} \sin a+\cos a=\frac{7}{5}\\ \sin ^2a+\cos ^2a=1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \sin a+\cos a=\frac{7}{5}\\ (\sin a+\cos a)^2-2\sin a\cos a=1\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} \sin a+\cos a=\frac{7}{5}\\ (\frac{7}{5})^2-2\sin a\cos a=1\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} \sin a+\cos a=\frac{7}{5}\\ \sin a\cos a=\frac{12}{25}\end{matrix}\right.\)

\(\Rightarrow \sin a(\frac{7}{5}-\sin a)=\frac{12}{25}\)

\(\Leftrightarrow \sin ^2a-\frac{7}{5}\sin a+\frac{12}{25}=0\)

\(\Leftrightarrow (\sin a-\frac{4}{5})(\sin a-\frac{3}{5})=0\Rightarrow \left[\begin{matrix} \sin a=\frac{4}{5}\\ \sin a=\frac{3}{5}\end{matrix}\right.\)

Nếu \(\sin a=\frac{4}{5}\Rightarrow \cos a=\frac{3}{5}\Rightarrow \tan a=\frac{\sin a}{\cos a}=\frac{4}{3}\)

Nếu \(\sin a=\frac{3}{5}\rightarrow \cos a=\frac{4}{5}\Rightarrow \tan a=\frac{\sin a}{\cos a}=\frac{3}{4}\)

19 tháng 7 2018

bài này bn có thể biến đổi sao cho bt được giá trị của tổng và tích giữa \(sinx;cosx\) như cô Akai rồi sử dụng viét đảo để giải tiếp nha

18 tháng 7 2022

a) Ta có A=\dfrac{\tan \alpha+3 \dfrac{1}{\tan \alpha}}{\tan \alpha+\dfrac{1}{\tan \alpha}}=\dfrac{\tan ^{2} \alpha+3}{\tan ^{2} \alpha+1}=\dfrac{\dfrac{1}{\cos ^{2} \alpha}+2}{\dfrac{1}{\cos ^{2} \alpha}}=1+2 \cos ^{2} \alphaA=tanα+tanα1tanα+3tanα1=tan2α+1tan2α+3=cos2α1cos2α1+2=1+2cos2α Suy ra A=1+2 \cdot \dfrac{9}{16}=\dfrac{17}{8}A=1+2169=817.

b) B=\dfrac{\dfrac{\sin \alpha}{\cos ^{3} \alpha}-\dfrac{\cos \alpha}{\cos ^{3} \alpha}}{\dfrac{\sin ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{3 \cos ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{2 \sin \alpha}{\cos ^{3} \alpha}}=\dfrac{\tan \alpha\left(\tan ^{2} \alpha+1\right)-\left(\tan ^{2} \alpha+1\right)}{\tan ^{3} \alpha+3+2 \tan \alpha\left(\tan ^{2} \alpha+1\right)}B=cos3αsin3α+cos3α3cos3α+cos3α2sinαcos3αsinαcos3αcosα=tan3α+3+2tanα(tan2α+1)tanα(tan2α+1)(tan2α+1).

Suy ra B=\dfrac{\sqrt{2}(2+1)-(2+1)}{2 \sqrt{2}+3+2 \sqrt{2}(2+1)}=\dfrac{3(\sqrt{2}-1)}{3+8 \sqrt{2}}B=22+3+22(2+1)2(2+1)(2+1)=3+823(21).

a, ta có \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)

                  \(\frac{1}{3}\)\(\frac{\sin\alpha}{\cos\alpha}\)

                    \(\cos\alpha\)= 3 \(\sin\alpha\)

ta có \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)\(\frac{3\sin\alpha+\sin\alpha}{3\sin\alpha-\sin\alpha}\)\(\frac{4\sin\alpha}{2\sin\alpha}\)\(2\)

#mã mã#

NV
19 tháng 8 2020

1.

\(cosa=\sqrt{1-sin^2a}=\frac{4}{5}\)

\(tana=\frac{sina}{cosa}=\frac{3}{4}\)

2.

\(1+tan^2x=\frac{1}{cos^2x}\Rightarrow cosx=\frac{1}{\sqrt{1+tan^2x}}=\frac{3}{5}\)

\(sinx=\sqrt{1-cos^2x}=\frac{4}{5}\)

3.

\(sina=\sqrt{1-cos^2a}=\frac{2\sqrt{2}}{3}\)

\(tana=\frac{sina}{cosa}=2\sqrt{2}\)

\(cota=\frac{1}{tana}=\frac{\sqrt{2}}{4}\)

8 tháng 6 2022

:)

spyx family

😅

 

18 tháng 5 2017

Do \(90^o< \alpha< 180^o\) nên \(cos\alpha,tan\alpha< 0\).
Vì vậy:
\(cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{\sqrt{15}}{4}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{1}{4}:\dfrac{-\sqrt{15}}{4}=-\dfrac{1}{\sqrt{15}}\).