K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

ta có phương trình \(mx^2-mx-5< 0\) có tập nghiệm là \(R\) khi \(\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left(-m\right)^2-4m\left(-5\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m^2+20m< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-20< m< 0\end{matrix}\right.\) \(\Leftrightarrow-20< m< 0\)

vậy \(-20< m< 0\) thì bất phương trình \(mx^2-mx-5< 0\) có tập nghiệm là \(R\)

Để bất phương trình có tập nghiệm là R thì \(\left(m-2\right)^2-4\left(m+1\right)< 0\)

\(\Rightarrow m^2-4m+4-4m-4< 0\)

=>m(m-8)<0

=>0<m<8

16 tháng 3 2022

Để bất phương trình đã cho có tập nghiệm là R thì

\(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\) (với a là hệ số của x2 và bằng 1, thỏa)

\(\Rightarrow\) (m-2)2-4.(m+1)\(\le\)\(\Leftrightarrow\) m2-8m\(\le\)\(\Leftrightarrow\) 0\(\le\)m\(\le\)8.

9 tháng 9 2017

Nếu  m = 0  thì phương trình trở thành  1 = 0 : vô nghiệm.

Khi  m ≠ 0 , phương trình đã cho có nghiệm khi và chỉ khi

∆ = m 2 - 4 m ≥ 0 ⇔ m ≤ 0 m ≥ 4

Kết hợp điều kiện  m ≠ 0 , ta được  m < 0 m ≥ 4

Mà m Z và m [−10; 10] m {−10; −9; −8;...; −1} {4; 5; 6;...; 10}.

Vậy có tất cả 17 giá trị nguyên m thỏa mãn bài toán.

Đáp án cần chọn là: A

NV
4 tháng 2 2021

1.

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta=\left(m+1\right)^2-4m\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-3m^2+7m+1< 0\end{matrix}\right.\)

\(\Leftrightarrow m< \dfrac{7-\sqrt{61}}{6}\)

2.

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\3m^2+13m+4\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\-4\le m\le-\dfrac{1}{3}\end{matrix}\right.\)

Không tồn tại m thỏa mãn

a ơi giúp e với 

https://hoc24.vn/cau-hoi/tim-gtnn-cua-t2m4-2m2-12m-18.333959553188

3 tháng 4 2017

6 tháng 11 2019

Bất phương trình x2-3x+2  ≤ 0 ⇔ 1 ≤ x ≤ 2

Bất phương trình mx2+(m+1) x+m+1   ≥ 0  

Xét hàm số  f ( x ) = - x - 2 x 2 + x + 1   ,   1 ≤ x ≤ 2

Có  f ' ( x ) = x 2 + 4 x + 1 ( x 2 + x + 1 ) 2   > 0   ∀ x ∈ 1 ; 2

Yêu cầu bài toán  ⇔ m ≥ m a x [ 1 ; 2 ]   f ( x ) ⇔ m ≥ - 4 7

Chọn C.

5 tháng 10 2017

Giải bất phương trình x2- 3x+ 2≤ 0 ta được 1≤x≤2.

Bất phương trình  mx2+ (m+ 1) x+ m+1≥0

⇔ m ( x 2 + x + 1 ) ≥ - x - 2 ⇔ m ≥ - x - 2 x 2 + x + 1

Xét hàm số f ( x ) = - x - 2 x 2 + x + 1   với 1≤ x≤ 2

Có đạo hàm  f ' ( x ) = x 2 + 4 x + 1 ( x 2 + x + 1 ) 2 > 0 , ∀ x ∈ 1 ; 2

Yêu cầu bài toán  ⇔ m ≥ m a x [ 1 ; 2 ]   f ( x ) ⇔ m ≥ - 4 7

Chọn C.

NV
24 tháng 2 2021

\(\Leftrightarrow\dfrac{mx^2-5x+m-4}{mx^2-4x+m-3}>0\)

BPT đã cho có tập nghiệm là R khi và chỉ khi:

\(\left\{{}\begin{matrix}\Delta_1=25-4m\left(m-4\right)< 0\\\Delta'_2=4-m\left(m-3\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4m^2+16m+25< 0\\-m^2+3m+4< 0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m< \dfrac{4-\sqrt{41}}{2}\\m>\dfrac{4+\sqrt{41}}{2}\end{matrix}\right.\)

2 tháng 12 2019

Bất phương trình ( m 2 - m ) x < m  vô nghiệm khi và chỉ khi  m 2 - m = 0 m ≤ 0 ⇔ [ m = 0 m = 1 ⇔ m = 0 m ≤ 0

20 tháng 3 2017