Tìm giá trị lớn nhất biểu thức:
\(C=5x-x^2\)
\(D=-x^2+6x-11\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)
\(=-\left(x+1\right)^2+4\le4\)
Dấu ''='' xảy ra khi x = -1
Vậy GTLN là 4 khi x = -1
b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)
\(=-\left(2x-1\right)^2-2\le-2\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTLN B là -2 khi x = 1/2
c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)
\(=-\left(x-1\right)^2-14\le-14\)
Vâỵ GTLN C là -14 khi x = 1
Bài 8 :
b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 3
Vậy GTNN B là 2 khi x = 3
c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu ''='' xảy ra khi x = 1/2
Vậy ...
c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)
Dấu ''='' xảy ra khi x = 6
Vậy ...
\(a,A=x^2-6x+11=\left(x-3\right)^2+2\)\(\Leftrightarrow Amin=2\)
Dấu = xảy ra \(\Leftrightarrow x=3\)
\(2x^2+10x-1=2\left(x^2+5x-\frac{1}{2}\right)=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}-\frac{27}{4}\right)=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\)
\(\Rightarrow Bmin=\frac{-27}{2}.''=''\Leftrightarrow x=\frac{-5}{2}\)
a/
A=5x-x^2 =-(x^2-5x) = -[(x-5/2)^2 -25/4] = -(x-5/2)^2 +25/4 <= 25/4
Vậy giá trị lớn nhất là 25/4 khi x=5/2
b/ B=x-x^2 = -(x^2-x) = -[(x-1/2)^2 -1/4] =-(x-1/2)^2 +1/4 <= 1/4
Vậy giá trị lớn nhất là 1/4 khi x=1/2
c/4x-x^2+3 =-(x^2-4x+3) = -[(x-2)^2 -1] =-(x-2)^2 +1 <= 1
Vậy lớn nhất là 1 khi x=2
d/-x^2 +6x-11 = -[x^2-6x+11) = -[(x-3)^2 +2] =-(x-3)^2 -2 <= -2
Vậy lớn nhất là bằng -2 khi x=3
e/ 5-8x-x^2 =-(x^2 +8x-5) = -[(x+4)^2 -21] = -(x+4)^2 +21 <=21
Vay lớn nhất là 21 khi x=-4
f: 4x-x^2+1=-(x^2-4x-1) =-[(x-2)^2 -5] = -(x-2)^2 +5 <= 5
Vậy lớn nhất bằng 5 khi x=2
a)
\(A=5x-x^2\)
\(A=-x^2+5x\)
\(A=-\left(x^2-5x\right)\)
\(A=-\left(x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2\right)\)
\(A=-\left[\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\right]\)
\(A=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
\(A=\frac{25}{4}-\left(x-\frac{5}{2}\right)^2\)
mà mũ chẵn luôn >= 0
\(\Rightarrow A\le\frac{25}{4}\)
Dấu '=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy,.........
b)
\(B=x-x^2\)
\(B=-x^2+x\)
\(B=-\left(x^2-x\right)\)
\(B=-\left(x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)\)
\(B=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(B=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)
\(B=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\)
mà ( x - 1/2 )2 luôn lớn hơn hoặc bằng 0 với mọi x
\(\Rightarrow B\le\frac{1}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Vậy,..........
\(B1,a,A=x^2-6x+11\)
\(=\left(x^2-6x+9\right)+2\)
\(=\left(x-3\right)^2+2\ge2\)
Dấu "=" <=> x=3
Vậy ..........
\(b,B=x^2-20x+101\)
\(=\left(x^2-20x+100\right)+1\)
\(=\left(x-10\right)^2+1\ge1\)
Dấu "=" <=> x = 10
Vậy .
\(2,a,A=4x-x^2+3\)
\(=7-\left(x^2-4x+4\right)\)'
\(=7-\left(x-2\right)^2\le7\)
Dấu ''='' <=> x = 2
Vậy .
\(b,B=-x^2+6x-11\)
\(=-2-\left(x^2-6x+9\right)\)
\(=-2-\left(x-3\right)^2\le-2\)
Dấu ""=" <=> x = 3
Vậy..
a) Đặt A = \(3x^2+6x+4\)
\(A=3\left(x^2+2x+1\right)+1\)
\(A=3\left(x+1\right)^2+1\)
Mà \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge1\)
Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)
Vậy Min A =1 khi x = -1
a chưa bt làm
b)
\(D=-x^2+6x-11\)
\(D=-\left(x^2-6x+11\right)\)
\(D=-\left(x^2-2\cdot x\cdot3+3^2+2\right)\)
\(D=-\left[\left(x-3\right)^2+2\right]\)
\(D=-\left(x-3\right)^2-2\)
\(D=-2-\left(x-3\right)^2\)
mà ( x - 3 )2 >= 0 với mọi x
\(\Rightarrow D\le-2\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Dmax = -2 <=> x = 3
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2≤0+21=21
Dấu = khi x+4=0 <=>x=-4
Bài 1:
c)C=x2+5x+8
=x2+5x+\(\left(\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)
=\(\left(x+\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\)
Vậy \(C_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\)
\(C=5x-x^2\)
\(=-\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)
\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]+\dfrac{25}{4}\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\)
Ta có : \(-\left(x-\dfrac{5}{2}\right)^2\le0\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)
Dấu = xảy ra \(\Leftrightarrow x-\dfrac{5}{2}=0\Leftrightarrow x=\dfrac{5}{2}\)
Vậy \(Max_C=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)
\(D=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left[\left(x^2-6x+9\right)+2\right]\)
\(=-\left(x-3\right)^2-2\)
Ta có :\(-\left(x-3\right)^2\le0\Leftrightarrow-\left(x-3\right)^2-2\le-2\)
Dấu = xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy \(Max_D=-2\Leftrightarrow x=3\)