cho a/b=b/c=c/d .CMR (a+b+c/b+c+d)^3=a/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
Lời giải:
Đặt $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=t$
$t^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}(1)$
Áp dụng tính chất dãy tỉ số bằng nhau:
$t^3=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}(2)$
Từ $(1);(2)$ ta có đpcm.
Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
=>\(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{b}{c}.\frac{b}{c}.\frac{b}{c}=\frac{c}{d}.\frac{c}{d}.\frac{c}{d}\)
=>\(\frac{a.b.c}{b.c.d}=\frac{a.a.a}{b.b.b}=\frac{b.b.b}{c.c.c}=\frac{c.c.c}{d.d.d}\)
=>\(\frac{a}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=>\(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=>ĐPCM
1.
Áp dụng t/c dãy tỉ :
a/b = b/c = c/d = (a + b + c)/(b + c + d).
Suy ra : (a/b)^3 = (a+b+c/b+c+d)^3
Vậy (a+b+c/B+c+d)^3 = (a/b)^3 = (a/b).(a/b).a/b) = (a/b).(b/c).(c/d) = a/d (vi dc rút gọn )
2.
Áp dụng tính chất của dãy tí số bằng nhau, ta có:
ab=bc=ca=a+b+cb+c+a=1ab=bc=ca=a+b+cb+c+a=1
⎧⎪⎨⎪⎩ab=1bc=1ca=1{ab=1bc=1ca=1
⎧⎨⎩a=bb=cc=a{a=bb=cc=a
Vậy a = b = c
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\) (Áp dụng t/c dãy tỉ số bằng nhau)
\(\Rightarrow\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
Mà \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)=> \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)