Tìm số dư của phép chia \(2011^{109}+2012^{67}+6739543\) cho 57
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CD
0
LT
3
25 tháng 7 2018
Câu a : Ta có :
\(2012^1\equiv17\left(mod57\right)\)
\(2012^2\equiv17^2\equiv4\left(mod57\right)\)
\(2012^7\equiv17^7\equiv5\left(mod57\right)\)
\(2012^{10}\equiv5.4.17\equiv55\left(mod57\right)\)
\(2012^{30}\equiv55^3\equiv49\left(mod57\right)\)
\(2012^{60}\equiv49^2\equiv7\left(mod57\right)\)
\(\Rightarrow2012^{67}\equiv7.5\equiv35\left(mod57\right)\)
Vậy số dư của phép chia là 35
25 tháng 7 2018
mạo mụi em lm lụi theo lời BÁC DƯƠNG dạy .
câu b)
\(2011\equiv16\left(mod57\right)\)
\(2011^2\equiv16^2\equiv28\left(mod57\right)\)
\(2011^7\equiv16^7\equiv55\left(mod57\right)\) \(2011^9\equiv28.55\equiv1\left(mod57\right)\) \(2011^{10}\equiv16.28.55\equiv16\left(mod57\right)\) \(2011^{50}\equiv16^5\equiv4\left(mod57\right)\) \(2011^{100}\equiv4^2\equiv16\left(mod57\right)\)\(\Rightarrow\) \(2011^{209}\equiv16.1\equiv16\left(mod57\right)\)
vậy số dư của phép chia là 16
TA
2
T
0
PB
0