Cho a,b c là các số dương và a+b+c=3.
Tìm giá trị nhỏ nhất của biểu thức: \(A=\dfrac{a^{2014}+2013}{b^2+1}+\dfrac{b^{2014}+2013}{c^2+1}+\dfrac{c^{2014}+2013}{a^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1+(\(\dfrac{1}{2014}\)+1)+(\(\dfrac{2}{2013}\)+1)+...+(\(\dfrac{2013}{2}\)+1)
= \(\dfrac{2015}{2015}\)+(\(\dfrac{1}{2014}\)+1)+(\(\dfrac{2}{2013}\)+1)+...+(\(\dfrac{2013}{2}\)+1)
= 2015.(\(\dfrac{1}{2015}\)+\(\dfrac{1}{2014}\)+\(\dfrac{1}{2013}\)+...+\(\dfrac{1}{2}\))=2015.B
\(\Rightarrow\) \(\dfrac{A}{B}\)=2015
Từ giả thiết suy ra : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c^2+ac+bc}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[\frac{c^2+ac+bc+ab}{ab\left(c^2+ac+bc\right)}\right]=0\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{ab\left(c^2+bc+ac\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a+b=0\) hoặc \(b+c=0\) hoặc \(a+c=0\)
Nếu a + b = 0 thì c = 2014 thay vào M :
\(M=\frac{1}{a^{2013}}+\frac{1}{b^{2013}}+\frac{1}{c^{2013}}=\frac{a^{2013}+b^{2013}}{\left(ab\right)^{2013}}+\frac{1}{c^{2013}}=\frac{\left(a+b\right).A}{\left(ab\right)^{2013}}+\frac{1}{c^{2013}}\)
\(=\frac{1}{c^{2013}}=\frac{1}{2014^{2013}}\) (A là một nhân tử trong phân tích a2013 + b2013 thành nhân tử)
Tương tự với các trường hợp còn lại.
Vậy \(M=\frac{1}{2014^{2013}}\)
\(a^{2013}+b^{2013}=a^{2012}+b^{2012}\Rightarrow a^{2012}\left(a-1\right)+b^{2012}\left(b-1\right)=0\) (1)
\(a^{2014}+b^{2014}=a^{2013}+b^{2013}\Rightarrow a^{2013}\left(a-1\right)+b^{2013}\left(b-1\right)=0\) (2)
Trừ vế cho vế của (2) cho (1):
\(\left(a-1\right)\left(a^{2013}-a^{2012}\right)+\left(b-1\right)\left(b^{2013}-b^{2012}\right)=0\)
\(\Leftrightarrow a^{2012}\left(a-1\right)^2+b^{2012}\left(b-1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}a^{2012}\left(a-1\right)^2=0\\b^{2012}\left(b-1\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a-1=0\\b-1=0\end{matrix}\right.\) \(\Rightarrow a=b=1\) (do \(a;b>0\))
\(\Rightarrow P=1+1=2\)
Thầy phynit, cô @Cẩm Vân Nguyễn Thị, các bạn hok giỏi Toán: @Nguyễn Huy Tú, @Nguyễn Trần Thành Đạt, ..................
Giups em vs
a:
\(A=\left|x-2013\right|+\left|2014-x\right|>=\left|x-2013+2014-x\right|=1\)
Dấu = xảy ra khi 2013<=x<=2014
\(B=\left|x-123\right|+\left|456-x\right|>=\left|x-123+456-x\right|=333\)
Dấu = xảy ra khi 123<=x<=456
b: \(\left|x\right|+2004>=2004\)
=>A<=2013/2004
Dấu = xảy ra khi x=0
\(B=\dfrac{\left|x\right|+2002+1}{\left|x\right|+2002}=1+\dfrac{1}{\left|x\right|+2002}< =1+\dfrac{1}{2002}=\dfrac{2003}{2002}\)
Dấu = xảy ra khi x=0
Lời giải:
Áp dụng BĐT AM-GM:
\(a^{2014}+\underbrace{1+1+....+1}_{1006}\geq 1007\sqrt[1007]{a^{2014}}=1007a^2\)
\(\Leftrightarrow a^{2014}+1006\geq 1007a^2\)
\(\Rightarrow a^{2014}+2013\geq 1007(a^2+1)\)
\(\Rightarrow \frac{a^{2014}+2013}{b^2+1}\geq \frac{1007(a^2+1)}{b^2+1}\). Hoàn toàn TT với các phân thức còn lại và cộng theo vế:
\(A\geq 1007\left(\frac{a^2+1}{b^2+1}+\frac{b^2+1}{c^2+1}+\frac{c^2+1}{a^2+1}\right)\)
\(\geq 1007.3\sqrt[3]{\frac{(a^2+1)(b^2+1)(c^2+1)}{(b^2+1)(c^2+1)(a^2+1)}}=3021\) (theo AM-GM)
Vậy \(A_{\min}=3021\Leftrightarrow a=b=c=1\)