Cho biết xy+1=x+y Tính F= \(x^{2019}y^{2020}-x^{2019}-y^{2020}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)
Ta có :
gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3
Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của 33 là sẽ tìm được nghiệm nguyên của PT
Ta có:\(f\left(x\right).f\left(y\right)=f\left(x.y\right)\)
\(\Rightarrow f\left(x+y\right)=f\left(x.y\right)\)
\(\Rightarrow f\left(2019\right)=f\left(0+2019\right)=f\left(0.2019\right)=f\left(0\right)=2020\)
\(\Rightarrow f\left(2020\right)=f\left(0+2020\right)=f\left(0.2020\right)=f\left(0\right)\)
\(\Rightarrow f\left(2019\right)=f\left(2020\right)=f\left(0\right)=2020\)
M+2019=2xy−yz−zx+2020M+2019=2xy−yz−zx+2020
=2xy−yz−zx+x2+y2+z2=2xy−yz−zx+x2+y2+z2
=(x+y−z2)2+3z24≥0=(x+y−z2)2+3z24≥0
⇒Mmin=0⇒Mmin=0 khi ⎧⎩⎨⎪⎪⎪⎪x+y−z2=03z24=0x2+y2+z2=2020{x+y−z2=03z24=0x2+y2+z2=2020
⇔⎧⎩⎨⎪⎪x+y=0z=0x2+y2=2020⇔{x+y=0z=0x2+y2=2020 ⇒⎧⎩⎨⎪⎪x=±1010−−−−√y=−xz=0
\(f'\left(x\right)=0\) có 2 nghiệm bội lẻ \(x=2019\) và \(x=2021\) nên hàm có 2 cực trị
\(x+y+z=0\)
\(\Leftrightarrow\)\(\left(x+y+z\right)^2=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2=0\) (vì xy + yz + xz = 0)
\(\Rightarrow\)\(x=y=z=0\)
Vậy \(Q=\left(x-1\right)^{2018}+\left(y-1\right)^{2019}+\left(z-1\right)^{2020}=1\)
ta có :
\(xy+1=x+y\Leftrightarrow\left(x-1\right)\left(y-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\y=1\end{cases}}\)
với x=1 ta có :\(F=y^{2020}-1-y^{2020}=-1\)
với y=1 ta có : \(F=x^{2020}-1-x^{2020}=-1\)
trong cả hai trường hợp F=-1 vậy giá trị của F là -1