K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bổ sung đề: ΔIKL cân tại I

a: góc IKL=góc KLI=(180-62)/2=118/2=59 độ

b: \(\widehat{OKL}+\widehat{OLK}=\dfrac{118^0}{2}=59^0\)

=>góc KOL=180-59=121 độ

c: Xét ΔIKL có

KDlà phân giác

LE là phân giác

KD cắt LE tại O

Do đó: O là tâm đường tròn nội tiếp

=>IO là phân giác của góc KIL

=>góc KIO=62/2=31 độ

8 tháng 4 2016

hình đâu

19 tháng 4 2017

Hướng dẫn:

a) ∆KIL có ˆII^ = 620

nên ˆIKL+ˆILKIKL^+ILK^ = 1180

Vì KO và LO là phân giác ˆIKLIKL^, ˆILKILK^

nên ˆOKL+ˆOLKOKL^+OLK^= 1212(ˆIKL+ˆILKIKL^+ILK^)

=> ˆOKL+ˆOLKOKL^+OLK^ = 1212 1180

ˆOKL+ˆOLKOKL^+OLK^ = 590

∆KOL có ˆOKL+ˆOLKOKL^+OLK^ = 590

nên ˆKOLKOL^ = 1800 – 590 = 1210

c) Vì O là giao điểm của hai đường phân giác của ˆKK^ˆLL^ nên O cách đều ba cạnh của tam giác IKL

11 tháng 5 2019

a, Áp dụng định lí tổng 3 góc trong ΔIKL, ta có:

∠I + ∠IKL + ∠ILK= 180 độ

⇒ ∠IKL + ∠ILK= 180 độ - ∠I

OK, OL là phân giác của các góc K, L nên:

∠OKL= 1/2∠IKL, ∠OLK= 1/2∠ILK

⇒ ∠OKL + ∠OLK= 1/2 (∠IKL + ∠ILK)

= 1/2 . (180 độ - ∠I)

Áp dụng định lí tổng 3 góc trong ΔOKL có:

∠ KOL + ∠OKL + ∠OLK = 180 độ

⇒ ∠KOL= 180 độ - (∠OKL + ∠OLK)

= 180 độ - 180- ∠I / 2= 180 + ∠I/2

Mà ∠I= 62 độ nên:

∠KOL= 180 +62/2= 121 độ

b, Ta có: 3 đường phân giác trong tam giác đồng quy.

Mà 2 đường phân giác KO, LO cắt nhau tại O

⇒ OI là tia phân giác của ∠KIL

⇒ ∠KIO= 1/2 ∠KIL= 1/2. 62 độ= 31 độ

c, O là giao điểm 3 đường phân giác của ΔIKL. Áp dụng định lí 3 đường phân giác

Vậy O cách đều 3 cạnh của ΔIKL

a: BC=15cm

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó:ΔBAD=ΔBHD

c: Xét ΔADK vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

Do đó:ΔADK=ΔHDC

Suy ra: DK=DC và AK=HC

d: Xét ΔBKC có BA/AK=BH/HC

nên AH//KC