K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

máy tính sinh ra là để sử dụng trong các trường hợp này :)

11 tháng 8 2020

Câu b, c tương tự câu a. Mình làm câu a coi như tượng trưng nha !!!!!!

a) Đặt: \(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)

<=> \(A^3=2+\sqrt{5}+2-\sqrt{5}+3\sqrt[3]{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}.\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

<=> \(A^3=4+3\sqrt[3]{4-5}.A\)

<=> \(A^3=4-3A\)

<=> \(A^3+3A-4=0\)

<=> \(\left(A-1\right)\left(A^2+A+4\right)=0\)

Có:     \(A^2+A+4=\left(A+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\)

=>    \(A-1=0\)

<=> \(A=1\)

=> \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1\)

VẬY TA CÓ ĐPCM

a) Ta có: \(A^3=\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)^3\)

\(=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

\(=4-3\cdot A\)

\(\Leftrightarrow A^3+3A-4=0\)

\(\Leftrightarrow A^3-A+4A-4=0\)

\(\Leftrightarrow A\left(A-1\right)\left(A+1\right)+4\left(A-1\right)=0\)

\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)

\(\Leftrightarrow A=1\)

28 tháng 9 2018

\(\hept{\begin{cases}\left(\sqrt[3]{2}+\sqrt[3]{20}-\sqrt[3]{25}\right)^2=9\left(\sqrt[3]{5}-\sqrt[3]{4}\right)\\\left(3\sqrt{\sqrt[3]{5}-\sqrt[3]{4}}\right)^2=9\left(\sqrt[3]{5}-\sqrt[3]{4}\right)\end{cases}}\)

25 tháng 9 2016

Đề sai òi

25 tháng 9 2016

tr? what the hell

31 tháng 7 2017

a, \(\sqrt{21}>\sqrt{20}\)

\(-\sqrt{5}>-\sqrt{6}\)

\(\Rightarrow\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

b, \(\sqrt{2}< \sqrt{3}\)

\(\sqrt{8}< \sqrt{9}=3\)

\(\Rightarrow\sqrt{2}+\sqrt{8}< \sqrt{3}+3\)