K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2021

Ta có \(F=sin^2\dfrac{\pi}{6}+...+sin^2\pi=\left(sin^2\dfrac{\pi}{6}+sin^2\dfrac{5\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+sin^2\dfrac{4\pi}{6}\right)+\left(sin^2\dfrac{3\pi}{6}+sin^2\pi\right)=\left(sin^2\dfrac{\pi}{6}+cos^2\dfrac{\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+cos^2\dfrac{2\pi}{6}\right)+\left(1+0\right)=1+1+1=3\)

NV
21 tháng 4 2021

\(A=cos\dfrac{\pi}{11}.cos\dfrac{3\pi}{11}.cos\dfrac{5\pi}{11}.cos\left(\pi-\dfrac{4\pi}{11}\right)cos\left(\pi-\dfrac{2\pi}{11}\right)\)

\(=cos\dfrac{\pi}{11}.cos\dfrac{3\pi}{11}cos\dfrac{5\pi}{11}\left(-cos\dfrac{4\pi}{11}\right)\left(-cos\dfrac{2\pi}{11}\right)\)

\(=cos\dfrac{\pi}{11}cos\dfrac{2\pi}{11}cos\dfrac{3\pi}{11}cos\dfrac{4\pi}{11}cos\dfrac{5\pi}{11}\)

\(\Rightarrow2A.sin\dfrac{\pi}{11}=2sin\dfrac{\pi}{11}cos\dfrac{\pi}{11}cos\dfrac{2\pi}{11}cos\dfrac{4\pi}{11}cos\dfrac{3\pi}{11}cos\dfrac{5\pi}{11}\)

\(=sin\dfrac{2\pi}{11}cos\dfrac{2\pi}{11}cos\dfrac{4\pi}{11}cos\dfrac{3\pi}{11}cos\dfrac{5\pi}{11}\)

\(=\dfrac{1}{2}sin\dfrac{4\pi}{11}cos\dfrac{4\pi}{11}cos\dfrac{3\pi}{11}cos\dfrac{5\pi}{11}\)

\(=\dfrac{1}{4}sin\dfrac{8\pi}{11}.cos\dfrac{3\pi}{11}.cos\left(\pi-\dfrac{6\pi}{11}\right)\)

\(=-\dfrac{1}{4}sin\left(\pi-\dfrac{3\pi}{11}\right)cos\dfrac{3\pi}{11}cos\dfrac{6\pi}{11}=-\dfrac{1}{4}sin\dfrac{3\pi}{11}cos\dfrac{3\pi}{11}cos\dfrac{6\pi}{11}\)

\(=-\dfrac{1}{8}sin\dfrac{6\pi}{11}cos\dfrac{6\pi}{11}=-\dfrac{1}{16}sin\dfrac{12\pi}{11}=-\dfrac{1}{16}sin\left(\pi+\dfrac{\pi}{11}\right)\)

\(=\dfrac{1}{16}sin\dfrac{\pi}{11}\)

\(\Rightarrow A=\dfrac{1}{32}\)

NV
6 tháng 8 2021

\(A=cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\left(-cos\left(\pi-\dfrac{5\pi}{7}\right)\right)=-cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(\Rightarrow A.sin\left(\dfrac{\pi}{7}\right)=-sin\left(\dfrac{\pi}{7}\right).cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(=-\dfrac{1}{2}sin\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)=-\dfrac{1}{4}sin\left(\dfrac{4\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(=-\dfrac{1}{8}sin\left(\dfrac{8\pi}{7}\right)=\dfrac{1}{8}sin\left(\dfrac{\pi}{7}\right)\)

\(\Rightarrow A=\dfrac{1}{8}\)

\(B=\dfrac{\sqrt{3}}{2}.cos48^0.cos24^0.cos12^0\)

\(\Rightarrow B.sin12^0=\dfrac{\sqrt{3}}{2}sin12^0.cos12^0cos24^0.cos48^0\)

\(=\dfrac{\sqrt{3}}{4}sin24^0cos24^0cos48^0=\dfrac{\sqrt{3}}{8}sin48^0.cos48^0\)

\(=\dfrac{\sqrt{3}}{16}sin96^0=\dfrac{\sqrt{3}}{16}cos6^0\)

\(\Rightarrow2B.sin6^0.cos6^0=\dfrac{\sqrt{3}}{16}cos6^0\Rightarrow B=\dfrac{\sqrt{3}}{32.sin6^0}\)

Biểu thức này ko thể rút gọn tiếp được

X=5cosx-2*cos(x+pi)+tan(3/2pi-x)+7*sin(pi/2-x)

=5cosx+7cosx+2cosx-cot(pi/2-x)

=14cosx-tanx

\(=\dfrac{tan\left(\dfrac{pi}{2}+x\right)\cdot sin\left(-x\right)\cdot cos\left(x-pi\right)}{cos\left(\dfrac{pi}{2}-x\right)\cdot sin\left(x+pi\right)}\)

\(=\dfrac{-cotx\cdot sin\left(-x\right)\cdot\left(-cosx\right)}{sinx\cdot-sinx}\)

\(=\dfrac{cotx\cdot sinx\left(-1\right)\cdot cosx}{-sinx\cdot sinx}=\dfrac{\dfrac{cosx}{sinx}\cdot cosx}{sinx}=\dfrac{cos^2x}{sin^2x}=cot^2x\)

5 tháng 7 2021

\(A=sin\left(\dfrac{\pi}{2}-\alpha+2\pi\right)+cos\left(\pi+\alpha+12\pi\right)-3sin\left(\alpha-\pi-4\pi\right)\)

\(=sin\left(\dfrac{\pi}{2}-\alpha\right)+cos\left(\pi+\alpha\right)-3sin\left(\alpha-\pi\right)\)

\(=cos\alpha-cos\alpha+3sin\left(\pi-\alpha\right)\)\(=3sin\alpha\)

\(B=sin\left(x+\dfrac{\pi}{2}+42\pi\right)+cos\left(x+\pi+2016\pi\right)+sin^2\left(x+\pi+32\pi\right)+sin^2\left(x-\dfrac{\pi}{2}-2\pi\right)+cos\left(x-\dfrac{\pi}{2}+2\pi\right)\)

\(=sin\left(x+\dfrac{\pi}{2}\right)+cos\left(x+\pi\right)+sin^2\left(x+\pi\right)+sin^2\left(x-\dfrac{\pi}{2}\right)+cos\left(x-\dfrac{\pi}{2}\right)\)

\(=cosx-cosx+sin^2x+cos^2x+sinx\)

\(=1+sinx\)

\(C=sin\left(x+\dfrac{\pi}{2}+1008\pi\right)+2sin^2\left(\pi-x\right)+cos\left(x+\pi+2018\pi\right)+cos2x+sin\left(x+\dfrac{\pi}{2}+4\pi\right)\)

\(=sin\left(x+\dfrac{\pi}{2}\right)+2sin^2\left(\pi-x\right)+cos\left(x+\pi\right)+cos2x+sin\left(x+\dfrac{\pi}{2}\right)\)

\(=cosx+2sin^2x-cosx+1-2sin^2x+cosx\)

\(=1+cosx\)

5 tháng 7 2021

bị bỏ gp chị nhắn tin vs mấy ad ấy, nhanh ko ấy mà chị =))