K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

\(3\left(x^2+y^2\right)-2\left(x^3+y^3\right)\)

\(=3\left[\left(x^2+2xy+y^2\right)-2xy\right]-2\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=3\left[\left(x+y\right)^2-2xy\right]-2\left[\left(x+y\right)^2-3xy\right]\)

\(=3\left(1-2xy\right)-2\left(1-3xy\right)\)

\(=6xy-6xy+3-2=1\)

Vậy với \(x+y=1\) thì \(3\left(x^2+y^2\right)-2\left(x^3+y^3\right)=1\)

1 tháng 12 2017

kim ngân bn giải thích cho mk dòng thứ 3 :-3xy từ đâu có vậy??

31 tháng 12 2021

\(c,P=\dfrac{x^2-x^2+8xy-16y^2}{x^2+4y^2}=\dfrac{8\left(\dfrac{x}{y}\right)-16}{\left(\dfrac{x}{y}\right)^2+4}\)

Đặt \(\dfrac{x}{y}=t\)

\(\Leftrightarrow P=\dfrac{8t-16}{t^2+4}\Leftrightarrow Pt^2+4P=8t-16\\ \Leftrightarrow Pt^2-8t+4P+16=0\)

Với \(P=0\Leftrightarrow t=2\)

Với \(P\ne0\Leftrightarrow\Delta'=16-P\left(4P+16\right)\ge0\)

\(\Leftrightarrow-P^2-4P+4\ge0\Leftrightarrow-2-2\sqrt{2}\le P\le-2+2\sqrt{2}\)

Vậy \(P_{max}=-2+2\sqrt{2}\Leftrightarrow t=\dfrac{4}{P}=\dfrac{4}{-2+2\sqrt{2}}=2+\sqrt{2}\)

\(\Leftrightarrow\dfrac{x}{y}=2+2\sqrt{2}\)

Bài a hình như sai đề rồi bạn.

undefined

5 tháng 6 2021

Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)

\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)

Dấu "=" \(x=y=\dfrac{1}{2}\)

5 tháng 6 2021

Đăng cho vui :))