K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2015

1. (A+B)2 = A2+2AB+B2

2. (A – B)2= A2 – 2AB+ B2

3. A– B2= (A-B)(A+B)

4. (A+B)3= A3+3A2B +3AB2+B3

5. (A – B)3 = A3- 3A2B+ 3AB2- B3

6. A+ B3= (A+B)(A2- AB +B2)

7. A3- B3= (A- B)(A2+ AB+ B2)

8. (A+B+C)2= A2+ B2+C2+2 AB+ 2AC+ 2BC

31 tháng 7 2016

Có mình 

31 tháng 7 2016

\(2\left(x-1\right)^2-4\left(3+x^2\right)+2x\left(x-5\right)\)

\(2.x^2-2.x.1+1^2-12-4x^2+2x^2-10x\)

\(2x^2-2x+1-12-4x^2+2x^2-10x\)

\(-12x-11\)

19 tháng 7 2019

Trả lời

2002 x 1006

= ( 1504 + 498 ) x ( 1504 - 498 )

= 15042 - 4982

= 2014012

198 x 202 

= ( 200 - 2 ) x ( 200 + 2 )

= 2022 - 22

= 40800

19 tháng 5 2021

1. Bình phương của một tổng

{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,} {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}

2. Bình phương của một hiệu

{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,} {\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}

3. Hiệu hai bình phương

{\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,} {\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}

4. Lập phương của một tổng

{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,} {\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}

5. Lập phương của một hiệu

{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,} {\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}

6. Tổng hai lập phương

{\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}

7. Hiệu hai lập phương

{\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}

19 tháng 5 2021

1. Bình phương của một tổng

{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,} {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}

2. Bình phương của một hiệu

{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,} {\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}

3. Hiệu hai bình phương

{\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,} {\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}

4. Lập phương của một tổng

{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,} {\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}

5. Lập phương của một hiệu

{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,} {\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}

6. Tổng hai lập phương

{\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}

7. Hiệu hai lập phương

{\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}

17 tháng 7 2018

a,(x+2y)3 =x3+3.x2.2y+3.x.(2y)2+(2y)3

= x3+6x2y+12xy2+8y3

b, phần b tương tự dấu thay đổi một tí

c, (5x+1)(5x+1)= (5x+1)2

=25x2+10x+1

17 tháng 7 2018

a)  \(\left(x+2y\right)^3=x^3+6x^2y+12xy^2+8y^3\)

b)  \(\left(2x-1\right)^3=8x^3-12x^2+6x-1\)

c)  \(\left(5x+1\right)\left(5x-1\right)=25x^2-1\)

28 tháng 6 2015

1. ( A + B ) = A^2 + 2.A.B + B^2

2. ( A - B ) = A^2 - 2.A.B + B^2

3.  A^2 - B^2 = ( A + B ).(A - B )

4. ( A + B )^3 = A^3 + 3A^2B + 3AB^2 + B^3

5. ( A - B )^3 = A^3 - 3A^2B + 3AB^2 - B^3

6. A^3 + B^3 = ( A + B ).( A^2 - AB + B^2 ) 

7. A^3 - B^3 = ( A - B ).( A^2 + AB + B^2 )

28 tháng 6 2015

Có trong 1 số ít quyển vở mỏng

24 tháng 6 2016

cái trên của bạn có sai không vậy ?? hình như chỗ -2x phải là -12x

8-12x+6x-x3 =(2-x)3

24 tháng 6 2016

chắc mình ghi sai, bạn làm cái đề bạn đã sửa cho mình nhé