K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2021

undefined

a: ĐKXĐ: x>=0; x<>1

\(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)

\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\)

\(=\dfrac{1}{\sqrt{x}+2}\)

c: Khi x=9-4 căn 5 thì \(A=\dfrac{1}{\sqrt{5}-2+2}=\dfrac{\sqrt{5}}{5}\)

d: căn x+2>=2

=>A<=1/2

Dấu = xảy ra khi x=0

28 tháng 5 2017

\(M=\dfrac{\sqrt{x-1}}{\sqrt{x+2}}\)

ĐKXĐ:x\(\ge\)1

M=\(\sqrt{\dfrac{x-1}{x+2}}=\sqrt{\dfrac{x+2-3}{x+2}}=\sqrt{1-\dfrac{3}{x+2}}\)

Để M lớn nhất thì \(\dfrac{3}{x+2}\) phải bé nhất <=>x+2 lớn nhất(không tìm được)

=>không tồn tại GTLN của M

---câu thứ 2 đọc đề không hiểu---

2.ĐKXĐ:x>-1

\(P=\dfrac{x+3}{\sqrt{x+1}}=\dfrac{x+1+2}{\sqrt{x+1}}=\sqrt{x+1}+\dfrac{2}{\sqrt{x+1}}\)

Áp dụng BĐT cosi cho 2 số dương

\(\sqrt{x+1}+\dfrac{2}{\sqrt{x+1}}\ge2\sqrt{\dfrac{2\sqrt{x+1}}{\sqrt{x+1}}}=2\sqrt{2}\)

Dấu = xảy ra khi x+1=2<=>x=1

=>GTNN của P=2\(\sqrt{2}\)đạt tại x=1

28 tháng 5 2017

câu đầu thiếu đk : x > -2

17 tháng 5 2021

`A=(1/(x-sqrtx)+1/(sqrtx-1)):(sqrtx+1)/(sqrtx-1)^2`

`=((sqrtx+1)/(x-sqrtx)).(sqrtx-1)^2/(sqrtx+1)`

`=(sqrtx-1)^2/(x-sqrtx)`

`=(sqrtx-1)/sqrtx`

\(\sqrt{x}-2>=-2\)

=>\(P=\dfrac{5}{\sqrt{x}-2}< =-\dfrac{5}{2}\)

Dấu = xảy ra khi x=0

Vậy: Giá trị lớn nhất của P là -5/2 khi x=0

DT
15 tháng 10 2023

\(R=\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{3x-5\sqrt{x}}{4-x}\right):\left(\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}-1\right)\left(ĐK:x\ge0,x\ne4\right)\\ =\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{3x-5\sqrt{x}}{\sqrt{x}^2-2^2}\right):\dfrac{2\sqrt{x}-1-\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)+3x-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}-2}{2\sqrt{x}-1-\sqrt{x}+2}\\ =\dfrac{3x-6\sqrt{x}+x+2\sqrt{x}+3x-5\sqrt{x}}{\sqrt{x}+2}.\dfrac{1}{\sqrt{x}+1}\)

\(=\dfrac{7x-9\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)

Bạn xem lại đề nhé, rút gọn thường ra kết quả rất đẹp chứ không dài như kết quả này đâu ạ.

15 tháng 10 2023

Giúp với ạ mình cảm ơn ai làm được mình cho 100sao