2x(x-2căn3)-x căn 3(x căn 3 trừ 5)- căn3 +1=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(A=\sqrt{4-2\sqrt{3}}+\sqrt{27}\)
\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{27}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+3\sqrt{3}\)
\(=\left|\sqrt{3}-1\right|+3\sqrt{3}\)
\(=\sqrt{3}-1+3\sqrt{3}\)
\(=4\sqrt{3}-1\)
\(B=\sqrt{14-6\sqrt{5}}+\sqrt{125}\)
\(=\sqrt{9-6\sqrt{5}+5}+\sqrt{125}\)
\(=\sqrt{\left(3-\sqrt{5}\right)}^2+5\sqrt{5}\)
\(=\left|3-\sqrt{5}\right|+5\sqrt{5}\)
\(=3-\sqrt{5}+5\sqrt{5}\)
\(=3+4\sqrt{5}\)
1, \(sin\left(x+\dfrac{\pi}{6}\right)+cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{6}}{2}\)
⇔ \(\dfrac{\sqrt{2}}{2}sin\left(x+\dfrac{\pi}{6}\right)+\dfrac{\sqrt{2}}{2}cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)
⇔ \(sin\left(x+\dfrac{\pi}{6}+\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{4}\)
2, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx=1-\sqrt{3}\)
⇔ \(\dfrac{\left(\sqrt{3}-1\right)}{2\sqrt{2}}sinx+\dfrac{\left(\sqrt{3}+1\right)}{2\sqrt{2}}cosx=\dfrac{1-\sqrt{3}}{2\sqrt{2}}\)
⇔ sinx . si
a) ( x - 3)4 + ( x - 5)4 = 82
Đặt : x - 4 = a , ta có :
( a + 1)4 + ( a - 1)4 = 82
⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82
⇔ 2a4 + 12a2 - 80 = 0
⇔ 2( a4 + 6a2 - 40) = 0
⇔ a4 - 4a2 + 10a2 - 40 = 0
⇔ a2( a2 - 4) + 10( a2 - 4) = 0
⇔ ( a2 - 4)( a2 + 10) = 0
Do : a2 + 10 > 0
⇒ a2 - 4 = 0
⇔ a = + - 2
+) Với : a = 2 , ta có :
x - 4 = 2
⇔ x = 6
+) Với : a = -2 , ta có :
x - 4 = -2
⇔ x = 2
KL.....
b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8
⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680
⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680
Đặt : n2 - 9n + 19 = t , ta có :
( t - 1)( t + 1) = 1680
⇔ t2 - 1 = 1680
⇔ t2 - 412 = 0
⇔ ( t - 41)( t + 41) = 0
⇔ t = 41 hoặc t = - 41
+) Với : t = 41 , ta có :
n2 - 9n + 19 = 41
⇔ n2 - 9n - 22 = 0
⇔ n2 + 2n - 11n - 22 = 0
⇔ n( n + 2) - 11( n + 2) = 0
⇔ ( n + 2)( n - 11) = 0
⇔ n = - 2 hoặc n = 11
+) Với : t = -41 ( giải tương tự )
@Giáo Viên Hoc24.vn
@Giáo Viên Hoc24h
@Giáo Viên
@giáo viên chuyên
@Akai Haruma
a) \(\left(\sqrt{\dfrac{9}{20}}-\sqrt{\dfrac{1}{2}}\right).\sqrt{2}=\sqrt{\dfrac{9}{20}.2}-\sqrt{\dfrac{1}{2}.2}=\sqrt{\dfrac{9}{10}}-1=\dfrac{3}{\sqrt{10}}-1\)
\(=\dfrac{3\sqrt{10}}{10}-1\)
b) \(\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right)\sqrt{3}=\sqrt{12.3}+\sqrt{27.3}-\sqrt{3.3}\)
\(=\sqrt{36}+\sqrt{81}-\sqrt{9}=6+9-3=12\)
c) \(\left(\sqrt{\dfrac{8}{3}}-\sqrt{24}+\sqrt{\dfrac{50}{3}}\right)\sqrt{6}=\sqrt{\dfrac{8}{3}.6}-\sqrt{24.6}+\sqrt{\dfrac{50}{3}.6}\)
\(=\sqrt{16}-\sqrt{144}+\sqrt{100}=4-12+10=2\)