Giải BPT sau:
(x+2).3 - 4 > x-2
______ ____
2 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
c) |2x - 1| = x + 2
<=> 2x - 1 = +(x + 2) hoặc -(x + 2)
* 2x - 1 = x + 2
<=> 2x - x = 2 + 1
<=> x = 3
* 2x - 1 = -(x + 2)
<=> 2x - 1 = x - 2
<=> 2x - x = -2 + 1
<=> x = -1
Vậy.....
Giải:
\(\left(x-4\right)\left(x+4\right)\ge\left(x-3\right)^2+5\)
\(\Leftrightarrow x^2-4^2\ge x^2-6x+3^2+5\)
\(\Leftrightarrow-4^2\ge-6x+3^2+5\)
\(\Leftrightarrow-16\ge-6x+14\)
\(\Leftrightarrow6x\ge16+14\)
\(\Leftrightarrow6x\ge30\)
\(\Leftrightarrow x\ge5\)
Vậy ...
\(a)\left(x-2\right)\left(x^2+2x-3\right)\ge0.\)
Đặt \(f\left(x\right)=\left(x-2\right)\left(x^2+2x-3\right).\)
Ta có: \(x-2=0.\Leftrightarrow x=2.\\ x^2+2x-3=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-3.\end{matrix}\right.\)
Bảng xét dấu:
x \(-\infty\) -3 1 2 \(+\infty\)
\(x-2\) - | - | - 0 +
\(x^2+2x-3\) + 0 - 0 + | +
\(f\left(x\right)\) - 0 + 0 - 0 +
Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left[-3;1\right]\cup[2;+\infty).\)
\(b)\dfrac{x^2-9}{-x+5}< 0.\)
Đặt \(g\left(x\right)=\dfrac{x^2-9}{-x+5}.\)
Ta có: \(x^2-9=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=-3.\end{matrix}\right.\)
\(-x+5=0.\Leftrightarrow x=5.\)
Bảng xét dấu:
x \(-\infty\) -3 3 5 \(+\infty\)
\(x^2-9\) + 0 - 0 + | +
\(-x+5\) + | + | + 0 -
\(g\left(x\right)\) + 0 - 0 + || -
Vậy \(g\left(x\right)< 0.\Leftrightarrow x\in\left(-3;3\right)\cup\left(5;+\infty\right).\)
a: \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< \dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
\(\Leftrightarrow2x-3+5x\left(x-2\right)< 5x^2-7\left(2x-3\right)\)
\(\Leftrightarrow2x-3+5x^2-10x< 5x^2-14x+21\)
=>-8x-3<-14x+21
=>6x<24
hay x<4
3: \(\dfrac{3x-2}{4}< \dfrac{3x+3}{6}\)
\(\Leftrightarrow3\left(3x-2\right)< 2\left(3x+3\right)\)
=>9x-6<6x+6
=>3x<12
hay x<4
a) \(\dfrac{2x-3}{35}\) + \(\dfrac{x\left(x-2\right)}{7}\) < \(\dfrac{x^2}{7}\) - \(\dfrac{2x-3}{5}\)
<=> \(\dfrac{2x-3}{35}\) + \(\dfrac{5x\left(x-2\right)}{7.5}\) < \(\dfrac{5x^2}{7.5}\) - \(\dfrac{7\left(2x-3\right)}{7.5}\)
<=> 2x-3 + 5x2-10x < 5x2 - 14x + 21
<=> 5x2 - 5x2 + 2x -10x + 14x < 21 + 3
<=> 6x < 24
<=> x < 4
vậy bpt có tập nghiệm S={ x < 4 }
(x + 2).3 - 4 > x - 2
= 3x + 6 - 4 > x - 2
= 3x + 2 > x - 2
= 3x - x > -2 - 2
= 2x > -4
= x > -2
Bạn ơi , ko phải dấu = đâu nhé