1978(1979^19+1979^18+...1979^2+1980)-1979^20+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1978\cdot1979+1980\cdot21+1958}{1980\cdot1979-1978\cdot1979}=\frac{1978\cdot1979+\left(1979+1\right)\cdot21+1958}{1979\cdot\left(1980-1978\right)}\)
\(=\frac{1978\cdot1979+1979\cdot21+21+1958}{1979\cdot2}=\frac{1979\cdot\left(1978+21+1\right)}{1979\cdot2}=\frac{2000}{2}=1000\)
(1978.1979+1980.21+1958)/(1980.1979+1978...
= (1978.1979+1979.21 + 21 + 1958 )/(1980.1979+1978.1979)
= (1978.1979+1979.21 + 1979 )/[(1980+1978).1979)]
= [(1978 + 21+1).1979]/[(1980+1978).1979)] = (2000.1979)/(2.1979.1979)
= 2000/(2.1979)=1000/1979
1000 đó bạn ơi chuẩn 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000%luôn đó bạn
1987 x 1979 + 1980 x 21 + 1958 / 1980 x 1979 - 1978 x 1979
= 1987 x 21 + 1958 / 1979 - 1978
= 41727 + 1958 / 1
= 43685 / 1 = 43685
a ) ( 1978 x 1979 + 1980 x 21 + 1958 ) / ( 1980 x 1979 - 1978 x 1979 ) = 1978 x 1979 + 1980 / 1979 . ( 1980 - 1978 )
= 0/1979
\(=\left(1979-1\right)\cdot1979^{19}+\left(1979-1\right)\cdot1979^{18}+...+\left(1979-1\right)\cdot1979^2+\left(1979-1\right)\left(1979+1\right)-1979^{20}+2\\ =1979^{20}-1979^{19}+1979^{19}-1979^{18}+...+1979^3-1979^2+1979^2-1-1979^{20}+2\\ =2-1=1\)