Bài 11. Cho tứ giác ABCD biết + = 2000, + = 1800; + = 1200.
a) Tính số đo các góc của tứ giác.
b) Gọi I là giao điểm của các tia phân giác của và của tứ giác. Chứng minh:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 14:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{3}=\dfrac{\widehat{E}}{4}=\dfrac{\widehat{F}}{7}=\dfrac{360^0}{15}=24^0\)
Do đó: \(\widehat{A}=24^0;\widehat{B}=72^0;\widehat{C}=96^0;\widehat{F}=168^0\)
Ta có: \(\widehat{ADB}=\widehat{CBD}\)
mà \(\widehat{ADB}=\widehat{CDB}\)
nên \(\widehat{CBD}=\widehat{CDB}\)
Xét ΔCBD có \(\widehat{CBD}=\widehat{CDB}\)
nên ΔCDB cân tại C
hay CD=CB
Ta có: \(\widehat{ADB}=\widehat{DBC}\)
mà \(\widehat{ADB}=\widehat{CDB}\)
nên \(\widehat{CBD}=\widehat{CDB}\)
Xét ΔCDB có \(\widehat{CBD}=\widehat{CDB}\)
nên ΔCDB cân tại C
hay CB=CD
a) Vì AB//CD, ta có góc ACD = góc BCD = 180 - góc D = 180 - 60 = 120 độ.
Vì AB//CD, ta có góc ACD = góc BAD.
Vậy số đo góc A là 120 độ.
b) Gọi góc BCD là x độ.
Theo giả thiết, góc B phần góc D = 4/5, ta có:
góc B = (4/5) * góc D
= (4/5) * 60
= 48 độ.
Vì AB//CD, ta có góc BCD = góc BAD.
Vậy góc BAD = góc BCD = x độ.
Vì tứ giác ABCD là tứ giác lồi, tổng các góc trong tứ giác ABCD là 360 độ.
Ta có: góc A + góc B + góc C + góc D = 360 độ.
Vì góc D = 60 độ, góc A = 120 độ và góc B = 48 độ, ta có:
120 + 48 + góc C + 60 = 360
góc C = 360 - 120 - 48 - 60 = 132 độ.
Vậy số đo góc B là 48 độ và số đo góc C là 132 độ.
* Ib = bài 4
B C A D M N E E
Trên ta BN lấy điểm E sao cho N là trung điểm của BE .
\(\Delta NBC\)và \(\Delta NED\) có :
NC = ND ( gt )
\(\widehat{BNC}=\widehat{DNE}\)( hai góc đối đỉnh )
NB = NE ( theo cách vẽ ) .
Do đó \(\Delta NBC=\Delta NED\)( c.g.c ) , suy ra DE = BC .
Theo giả thiết MN = \(\frac{AD+BC}{2}\), vì thế suy ra MN = \(\frac{AD+DE}{2}\) (1)
Mặt khác trong tam giác ABE thì MN là đường trung bình của tam giá đó nên MN = \(\frac{AE}{2}\). (2)
Từ (1) và (2) suy ra : AE = AD + DE . Đẳng thức này chỉ xảy ra khi ba điểm A,D,E thẳng hàng .
Lại do \(\Delta NBC\)= \(\Delta NED\)nên \(\widehat{BCD}=\widehat{EDC}\)do đó DE // BC ( hai góc ở vị trí so le trong bằng nhau ) , từ đó suy ra AD // BC.
Vậy tứ giác ABCD là hình thang ( đpcm ).
giúp mk với:<