K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

Đặt \(A=\dfrac{1}{4.6}+\dfrac{1}{2.6.8}+\dfrac{1}{3.8.10}+\dfrac{1}{4.10.12}\)

\(\dfrac{1}{2}A=\dfrac{1}{2.4.6}+\dfrac{1}{4.6.8}+\dfrac{1}{6.8.10}+\dfrac{1}{8.10.12}\)

\(\left(\dfrac{1}{2}A\right).4=\dfrac{4}{2.4.6}+\dfrac{4}{4.6.8}+\dfrac{4}{6.8.10}+\dfrac{4}{8.10.12}\)

\(\dfrac{1}{2}.4.A=\dfrac{6-2}{2.4.6}+\dfrac{8-4}{4.6.8}+\dfrac{10-6}{6.8.10}+\dfrac{12-8}{8.10.12}\)

\(2A=\dfrac{6}{2.4.6}-\dfrac{2}{2.4.6}+\dfrac{8}{4.6.8}-\dfrac{4}{4.6.8}+\dfrac{10}{6.8.10}-\dfrac{6}{6.8.10}+\dfrac{12}{8.10.12}-\dfrac{8}{8.10.12}\)

\(2A=\dfrac{1}{2.4}-\dfrac{1}{4.6}+\dfrac{1}{4.6}-\dfrac{1}{6.8}+\dfrac{1}{6.8}-\dfrac{1}{8.10}+\dfrac{1}{8.10}-\dfrac{1}{10.12}\)

\(2A=\dfrac{1}{2.4}-\dfrac{1}{10.12}\)

\(2A=\dfrac{1}{8}-\dfrac{1}{120}\)

\(2A=\dfrac{7}{60}\)

\(A=\dfrac{7}{120}\)

10 tháng 5 2019

1/4.6+1/2.6.8+1/3.8.10+1/4.10.12

F= 1/24+1/96+1/240+1/480                          MC:480

F= 1.20/24.20+/1.5/96.5+1.2/240.2+1/480

F=20/480+5/480+2/480+1/480

F=28/480

F=7/120

10 tháng 5 2018

Giúp tớ ik 

16 tháng 4 2022

=1/2 - 1/4 + 1/4 - 1/6 + ... + 1/98 - 1/100

=1/2 - 1/100 = 49/100

16 tháng 4 2022

1/2 - 1/4 +  1/4 - 1/6 + 1/6 - 1/8 + ... + 1/96 - 1/98 + 1/98 - 1/100

= 1/2 - 1/100 

= 49/100

\(S=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}-\left(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+\dfrac{1}{8\cdot10}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}\right)-\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+\dfrac{2}{8\cdot10}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{9}\right)-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{10}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{8}{9}-\dfrac{1}{2}\cdot\dfrac{2}{5}\)

\(=\dfrac{4}{9}-\dfrac{1}{5}\)

\(=\dfrac{11}{45}\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{10}\right)=\dfrac{1}{2}\cdot\dfrac{4}{10}=\dfrac{2}{10}=\dfrac{1}{5}\)

2 tháng 11 2023

Gọi biểu thức trên là A

Ta có:

2A = (\(\dfrac{1}{2.4}\)+\(\dfrac{1}{4.6}\)+...+\(\dfrac{1}{x.\left(x+2\right)}\)).2

2A = \(\dfrac{2}{2.4}\)+\(\dfrac{2}{4.6}\)+...+\(\dfrac{2}{x\left(x+2\right)}\)

2A = \(\dfrac{1}{2}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{6}\)+...+\(\dfrac{1}{x}\)-\(\dfrac{1}{x+2}\)

2A = \(\dfrac{1}{2}\)-\(\dfrac{1}{x+2}\)

mà A = \(\dfrac{1}{10}\)(đề bài)

nên 2A = \(\dfrac{2}{10}\) hay \(\dfrac{1}{2}\) - \(\dfrac{1}{x+2}\) = \(\dfrac{2}{10}\)

                     suy ra \(\dfrac{1}{x+2}\) = \(\dfrac{1}{2}\)-\(\dfrac{2}{10}\)=\(\dfrac{3}{10}\) 

a: \(A=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2022\cdot2024}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2022}-\dfrac{1}{2024}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{1011}{2024}=\dfrac{1011}{4848}< \dfrac{1}{4}\)

b: \(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2013\cdot2015}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2014}{2015}=\dfrac{1007}{2015}< \dfrac{1}{2}\)

3 tháng 3 2018

\(S=\dfrac{1}{1.3}-\dfrac{1}{2.4}+\dfrac{1}{3.5}-\dfrac{1}{4.6}+\dfrac{1}{5.7}-\dfrac{1}{6.8}+\dfrac{1}{7.9}-\dfrac{1}{8.10}\)

\(S=\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}\right)-\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+\dfrac{1}{8.10}\right)\)

\(S=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{7}-\dfrac{1}{9}\right)-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{8}-\dfrac{1}{10}\right)\)

\(S=\dfrac{1}{2}-\dfrac{1}{18}-\dfrac{1}{4}+\dfrac{1}{20}\)

\(S=.C.A.S.I.O.\)

26 tháng 2 2018

Ta có \(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{2n\left(2n+2\right)}=\dfrac{1009}{4038}\)

\(\Leftrightarrow\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2n\left(2n+2\right)}=\dfrac{1009}{2019}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2n}-\dfrac{1}{2n+2}=\dfrac{1009}{2019}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2n+2}=\dfrac{1009}{2019}\)

\(\Leftrightarrow\dfrac{n}{2n+2}=\dfrac{1009}{2019}\)

\(\Leftrightarrow2019n=1009\left(2n+2\right)\)

\(\Leftrightarrow2019n=2018n+2018\)

\(\Leftrightarrow n=2018\)