K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

Chứng tỏ rằng: H(x) không có nghiệm

H(x) = \(x^2-4x+11\)

Ta có:

\(x^2>0\left\{1\right\}\)

\(11>0\left\{2\right\}\)

\(-4x< 0\left\{3\right\}\)

Từ {1}; {2}; {3}

⇒ H(x) = \(x^2-4x+11>0\)

⇒ H(x) = \(x^2-4x+11\) không có nghiệm

8 tháng 5 2018

- Vì x^2 lớn hơn hoặc bằng 0 với mới x

=> x^2 - 4x + 11 lớn hơn hoặc bằng 0 với mọi x

- Vậy đa thức trên không có nghiệm.

30 tháng 4 2018

H ( x)= 4x4 + 9x2 + 2

Ta có : 4x4 \(\ge\)0

            9x2 \(\ge\)0

            2 > 0

\(\Rightarrow\)4x4 + 9x2 + 2 > 0

\(\Rightarrow\)      H ( x)       > 0

Vậy đa thức H ( x) không có nghiệm

Hok tốt ^^

30 tháng 4 2018

Ta có :4^4+9^2 >0

            4^4+9^2+2> hoặc = 2

\(\Rightarrow4x^4+9x^2+2>0\)

\(\RightarrowđathứcH\left(x\right)khongcónghiệm\)

3 tháng 4 2022

Ta có:

x2 + 4x + 5

= x2 + 2.2x + 22 + 1

= (x + 2)2 + 1

Do (x + 2)2 ≥ 0 ∀ x

=> (x + 2)2 + 1 ≥1 ∀ x

Vậy x2 + 4x + 5 không có nhiệm

3 tháng 4 2022

Có: \(-5-4x^2=0\)

\(5+4x^2=0\)

\(4x^2=-5\left(vl\right)\)

=> Đa thức vô nghiệm

3 tháng 4 2022

Ta cho:  P\(_{\left(x\right)}\)=\(-5-4x^2=0\)

\(4x^2=-5-0\)

\(4x^2-5\)

\(x^2\)=\(\dfrac{-5}{4}\)

Vì không có số nào bình phương là số âm

=> Đa thức \(P_{\left(x\right)}\)không có nghiệm

NV
11 tháng 1 2024

b.

Đặt \(f\left(x\right)=x^2-5x+51=x^2-5x+\dfrac{25}{4}+\dfrac{37}{2}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\)

Do \(\left(x-\dfrac{5}{2}\right)^2\ge0;\forall x\Rightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\ge\dfrac{37}{2}\) ;\(\forall x\)

\(\Rightarrow\) Đa thức \(f\left(x\right)\) không có nghiệm

c.

Đặt \(g\left(x\right)=-x^2-6x-45=-\left(x^2+6x+9\right)-36=-\left(x+3\right)^2-36\)

Do \(-\left(x+3\right)^2\le0;\forall x\Rightarrow-\left(x+3\right)^2-36\le-36\) ;\(\forall x\)

\(\Rightarrow\) Đa thức \(g\left(x\right)\) không có nghiệm

d.

Đặt \(h\left(x\right)=x^2-4x+26=\left(x^2-4x+4\right)+22=\left(x-2\right)^2+22\)

Do \(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2+22\ge22\) ;\(\forall x\)

\(\Rightarrow\) Đa thức \(h\left(x\right)\) không có nghiệm

4.

d. \(x^3-19x^2=0\)

\(\Leftrightarrow x^2\left(x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-19=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=19\end{matrix}\right.\)

Vậy đa thức có 2 nghiệm là \(x=0;x=19\)

30 tháng 8 2015

bn ơn , cái này vốn dĩ có nghiệm mà , s mà chứng minh vô nghiệm đc

30 tháng 4 2018

Ta có : \(N\left(x\right)=4x^4+x^2+x\)

Mà \(4x^4>0\)

     \(x^2>0\)

  \(\Rightarrow\left(4x^4+x^2+x\right)>0\)

\(\Leftrightarrow N\left(x\right)>0\)

\(\Leftrightarrow N\left(x\right)\)vô nghiệm .

Chúc bạn hok tốt !!!

27 tháng 5 2020

x2+4x+5=x2+4x+4+1=(x+2)2+1 >= 0+1 =1>0 do đó đa thức trên ko có nghiệm

x2+6x+10=x2+6x+9+1=(x+3)2+1 >=0+1=1>0 do đó đa thức trên ko có nghiệm

TA CÓ

\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)

\(=1-2+1=0\)

vậy ......

TA CÓ

\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)

vậy..............

4 tháng 4 2019

Thay \(x=\frac{1}{2}\)vào P (x) ta có:

\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)

\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)

\(P\left(\frac{1}{2}\right)=1-2+1\)

\(P\left(\frac{1}{2}\right)=0\)

Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)

8 tháng 2 2021

*Chứng tỏ \(x=\frac{1}{2}\) là nghiệm của đa thức \(P\left(x\right)=4x^2-4x+1\)

Cho \(P\left(x\right)=0\)

\(\Rightarrow4x^2-4x+1=0\)

\(\Rightarrow4x^2-2x-2x+1=0\)

\(\Rightarrow2x\left(2x-1\right)-\left(2x-1\right)=0\)

\(\Rightarrow\left(2x-1\right)\left(2x-1\right)=0\)

\(\Rightarrow\left(2x-1\right)^2=0\)

\(\Rightarrow2x-1=0\)

\(\Rightarrow x=\frac{1}{2}\)

\(\Rightarrow P\left(x\right)\) có nghiệm là \(x=\frac{1}{2}\)

\(\Rightarrowđpcm\)

*Chứng tỏ đa thức \(Q\left(x\right)=4x^2+1\) không có nghiệm

Ta có: \(4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1>0\)

hay \(Q\left(x\right)>0\)

\(\Rightarrow\)Đa thức \(Q\left(x\right)=4x^2+1\) không có nghiệm   (đpcm)