CMR : A(n)=n7-n chia hết cho 42 và mọi n thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 7 là số nguyên tố nên theo định lí Fermat nhỏ, ta được:
\(n^7-n⋮7\)
\(A=n^2+n+1=n\left(n+1\right)+1\)
Vì \(n\left(n+1\right)\)là tích hai số tự nhiên liên tiếp nên \(n\left(n+1\right)\)có các chữ số cuối là : 0;2;6
Do đó \(n\left(n+1\right)+1\)có các chữ số cuối là 1;3;7
Vì thế \(n\left(n+1\right)+1\)không chia hết cho 2;5 với mọi số n
Hay \(n^2+n+1\)không chia hết cho2;5 vs mọi số n
Vậy A không chia hết cho 2;5 với mọi số n
Ta có : n2+n+1 (dấu . là dấu nhân)
=n.n+n.1+1
=n.(n+1)+1
Do n.(n+1) chia hết cho2
Dựa vào một số chia hết cho 2 và 5 có tận cùng =0 (số chẵn )
=>n.(n+1)+1 ( số lẻ ) không chia hết cho 2 và 5 với mọi n thuộc N
đề sai bn nhé
Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1
Đơn giản thôi:
Xét n=3k=> n^2=9k^2 chia hết cho 3
Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1
Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1
Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.
b) Có mn(m^2-n^2)
=mn(m-n)(m+n)
Nếu m hoặc n chia hết cho 3 thì xong luôn
Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3
Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3
Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3