Cho tam giác abc can tai a voi duong trung tuyen am
Chung minh tam giac abm bang tam giac acm
Tinh cac goc amb va amc
Biet ab =ac =13cm ,bc=10cm.tính am
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
a: Xét ΔAMB có MD là phân giác
nên AD/DB=AM/MB=AM/MC(1)
Xét ΔAMC có ME là phân giác
nen AE/EC=AM/MC(2)
Từ (1) và (2) suy ra AD/DB=AE/EC
hay DE//BC
b: \(\widehat{MDE}+\widehat{MED}=\widehat{DMB}+\widehat{EMC}\)
\(=\dfrac{1}{2}\cdot\left(\widehat{AMB}+\widehat{AMC}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
=>ΔDME vuông tại M
c: Xét ΔABM có DI//BM
nên DI/BM=AD/AB(1)
Xét ΔACM có IE//CM
nên IE/CM=AE/AC(2)
Xét ΔABC có DE//BC
nên AD/AB=AE/AC(3)
Từ (1), (2)và (3) suy ra ID=IE
hay I là trung điểm của DE
tu ve hinh :
xet tamgiac AMB va tamgiac AMC co : goc BAM = goc CAM do AM la phan giac cua goc BAC (gt)
AB = AC va goc ABC = goc ACB do tamgiac ABC can tai A (gt)
=> tamgiac AMB = tamgiac AMC (c - g - c) (1)
b, (1) => goc AMB = goc AMC
goc AMB + goc AMC = 180 (ke bu)
=> goc AMB = 90
=> AM | BC (dn)
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là tia phân giác của góc BAC
c: Xét ΔABI và ΔACI có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
DO đó: ΔABI=ΔACI
Suy ra: \(\widehat{ABI}=\widehat{ACI}=90^0\)
hay CI\(\perp\)CA
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{MBE}=\widehat{MCF}\)
Do đó:ΔBEM=ΔCFM
b: Ta có: AE+EB=AB
AF+FC=AC
mà EB=FC
và AB=AC
nên AE=AF
mà ME=MF
nên AM là đường trung trực của EF
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(1)
Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
Suy ra: DB=DC
hay D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,M,D thẳng hàng
a: XétΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
=>góc AMB=góc AMC=90 độ
c: BM=CM=CB/2=5cm
=>AM=12cm