K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 4 2019

3/

\(\frac{sin2x-sinx}{1-cosx+cos2x}=\frac{2sinxcosx-sinx}{1-cosx+2cos^2x-1}=\frac{sinx\left(2cosx-1\right)}{cosx\left(2cosx-1\right)}=\frac{sinx}{cosx}=tanx\)

4/

\(\left(\frac{sinx+cotx}{1+sinx.tanx}\right)^{2014}=\left(\frac{sinx+\frac{1}{tanx}}{1+sinxtanx}\right)^{2014}=\left(\frac{sinxtanx+1}{tanx\left(sinxtanx+1\right)}\right)^{2014}\)

\(=\left(\frac{1}{tanx}\right)^{2014}=cot^{2014}x\)

\(\frac{sin^{2014}x+cot^{2014}x}{1+\left(sinx.tanx\right)^{2014}}=\frac{sin^{2014}x+\frac{1}{tan^{2014}x}}{1+\left(sinx.tanx\right)^{2014}}=\frac{\left(sinxtanx\right)^{2014}+1}{tan^{2014}x\left[\left(sinxtanx\right)^{2014}+1\right]}\)

\(=\frac{1}{tan^{2014}x}=\left(\frac{1}{tanx}\right)^{2014}=cot^{2014}x\)

\(\Rightarrow\left(\frac{sinx+cotx}{1+sinx.tanx}\right)^{2014}=\frac{sin^{2014}x+cot^{2014}x}{1+\left(sinx.tanx\right)^{2014}}\)

NV
21 tháng 4 2020

\(\frac{sinx+cotx}{1+sinx.tanx}=\frac{sinx.cosx\left(sinx+cotx\right)}{sinx.cosx\left(1+sinx.tanx\right)}=\frac{cosx\left(sin^2x+cosx\right)}{sinx\left(cosx+sin^2x\right)}=cotx\)

\(\Rightarrow VT=cot^nx\)

\(Vp=\frac{cos^nx.sin^nx\left(sin^nx+cot^nx\right)}{cos^nxsin^nx\left(1+sin^nxcot^nx\right)}=\frac{cos^nx\left(sin^{2n}x+cos^nx\right)}{sin^nx\left(cos^nx+sin^{2n}x\right)}=\frac{cos^nx}{sin^nx}=cot^nx\)

\(\Rightarrow VT=VP\) (đpcm)

23 tháng 10 2017

Điều kiện: cosx ≠ 0; sinx ≠ 0 và sin2x ≠ 1.

⇔ x ≠ kπ/2, k ∈ Z và x ≠ π/4 + kπ, k ∈ Z.

Vậy tập xác định của hàm số là

D \ R [(kπ/2,k ∈ Z)] ∪ [(π/4 + kπ,k ∈ Z)].

NV
16 tháng 5 2019

\(2\left[\left(sinx+cosx+1\right)\left(sinx+cosx-1\right)\right]^2\)

\(=2\left[\left(sinx+cosx\right)^2-1\right]^2=2\left(sin^2x+cos^2x+2sinx.cosx-1\right)^2\)

\(=2\left(2sinx.cosx\right)^2=2sin^22x=1-cos4x\)

b/ \(\frac{3-4cos2a+2cos^22a-1}{3+4cos2a+2cos^22a-1}=\frac{2\left(cos^22a-2cos2a+1\right)}{2\left(cos^22a+2cos2a+1\right)}=\frac{\left(cos2a-1\right)^2}{\left(cos2a+1\right)^2}\)

\(\frac{\left(1-2sin^2a-1\right)^2}{\left(2cos^2a-1+1\right)^2}=\frac{4sin^4a}{4cos^4a}=tan^4a\)

c/ \(cos^22x+sin^22x-2sin2x.cos2x+2sin3x.cosx-2sinx.cosx-sin^2x\)

\(=1-sin4x+sin4x+sin2x-sin2x-sin^2x\)

\(=1-sin^2x=cos^2x\)

16 tháng 5 2019

Cảm ơn bạn nhiều lắm! khocroi

17 tháng 12 2021

Answer:

\(\sin x+4\cos x=2+\sin2x\)

\(\Leftrightarrow\sin x-2+4\cos x-2\sin x\cos x=0\)

\(\Leftrightarrow\sin x-2+2\cos x\left(2-\sin x\right)=0\)

\(\Leftrightarrow\left(\sin x-2\right)\left(1-2\cos x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sin x=2\text{(Loại)}\\\cos x=\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow x=\pm\frac{\text{π}}{3}+k2\text{π}\left(k\inℤ\right)\)

NV
9 tháng 4 2019

a/ \(sin3x=sin\left(2x+x\right)=sin2xcosx+cos2x.sinx\)

\(=2sinxcos^2x+\left(1-2sin^2x\right)sinx=2sinx\left(1-sin^2x\right)+sinx-2sin^3x\)

\(=3sinx-4sin^3x\)

b/

\(tan2x+\frac{1}{cos2x}=\frac{sin2x}{cos2x}+\frac{1}{cos2x}=\frac{sin2x+1}{cos2x}=\frac{2sinxcosx+sin^2x+cos^2x}{cos^2x-sin^2x}\)

\(=\frac{\left(sinx+cosx\right)^2}{\left(sinx+cosx\right)\left(cosx-sinx\right)}=\frac{sinx+cosx}{cosx-sinx}=\frac{\left(sinx+cosx\right)\left(cosx-sinx\right)}{\left(cos-sinx\right)^2}\)

\(=\frac{cos^2x-sin^2x}{cos^2x+sin^2x-2sinxcosx}=\frac{1-2sin^2x}{1-sin2x}\)

c/

\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{cos^2x-sin^2x}\)

\(=\frac{2sinxcosx+2sinxcosx}{cos2x}=\frac{4sinxcosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)

d/

\(\frac{sin2x}{1+cos2x}=\frac{2sinxcosx}{1+2cos^2x-1}=\frac{2sinxcosx}{2cos^2x}=\frac{sinx}{cosx}=tanx\)

e/

NV
2 tháng 11 2021

\(y=\dfrac{sinx+1}{sinx}\)

ĐKXĐ: \(sinx\ne0\Rightarrow x\ne k\pi\)

\(y=\dfrac{sin2x+cosx}{tanx-sinx}\)

ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx-sinx\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\left(\dfrac{1}{cosx}-1\right)\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\\cosx\ne1\end{matrix}\right.\)

\(\Rightarrow sin2x\ne0\)

\(\Rightarrow x\ne\dfrac{k\pi}{2}\)

NV
28 tháng 3 2019

Giả sử biểu thức xác định

\(\frac{2tanx-sin2x}{\left(sinx+cosx\right)^2-1}=\frac{2tanx-sin2x}{sin^2x+cos^2x+2sinx.cosx-1}=\frac{2tanx-2sinx.cosx}{2sinx.cosx}\)

\(=\frac{sinx}{cosx.sinx.cosx}-1=\frac{1}{cos^2x}-1=\frac{1-cos^2x}{cos^2x}=\frac{sin^2x}{cos^2x}=tan^2x\)