cho a,b,c là ba cạnh của một tam giác có chu vi bằng 2.Chứng ming rằng:
a2+b2+c2+2abc < 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
https://hoc24.vn/cau-hoi/cho-a-b-c-la-do-dai-ba-canh-cua-mot-tam-giac-va-thoa-man-he-thuc-a-b-c-1-cmr-a2-b2-c2-12.139261258302
a, b, c là độ dài 3 cạnh của tgiác nên ta có: b+c > a => ab+ac > a²
tương tự: bc+ab > b²; ca+bc > c²
cộng lại: 2ab+2bc+2ca > a²+b²+c² (*)
gthiết: 4 = (a+b+c)² = a²+b²+c² + 2ab+2bc+2ca > a²+b²+c² + a²+b²+c² {ad (*)}
=> 2 > a²+b²+c² (đpcm)
đúng nha
a) Vì a, b, c là độ dài 3 cạnh của một tam giác
⇒ a + c > b và a + b > c (Bất đẳng thức tam giác)
⇒ a + c – b > 0 và a + b – c > 0
Ta có: (b – c)2 < a2
⇔ a2 – (b – c)2 > 0
⇔ (a – (b – c))(a + (b – c)) > 0
⇔ (a – b + c).(a + b – c) > 0 (Luôn đúng vì a + c – b > 0 và a + b – c > 0).
Vậy ta có (b – c)2 < a2 (1) (đpcm)
b) Chứng minh tương tự phần a) ta có :
( a – b)2 < c2 (2)
(c – a)2 < b2 (3)
Cộng ba bất đẳng thức (1), (2), (3) ta có:
(b – c)2 + (c – a)2 + (a – b)2 < a2 + b2 + c2
⇒ b2 – 2bc + c2 + c2 – 2ca + a2 + a2 – 2ab + b2 < a2 + b2 + c2
⇒ 2(a2 + b2 + c2) – 2(ab + bc + ca) < a2 + b2 + c2
⇒ a2 + b2 + c2 < 2(ab + bc + ca) (đpcm).
Ta có:
\(a< b+c\)
\(\Leftrightarrow2a< a+b+c=2\)
\(\Leftrightarrow a< 1\)
Tương tự ta cũng có:
\(\hept{\begin{cases}b< 1\\c< 1\end{cases}}\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)
\(\Leftrightarrow-abc+ab+bc+ca-a-b-c+1>0\)
\(\Leftrightarrow abc< \left(ab+bc+ca\right)-1\)
\(\Leftrightarrow2abc< 2\left(ab+bc+ca\right)-2\)
\(\Leftrightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2+2\left(ab+bc+ca\right)-2\)
\(\Leftrightarrow a^2+b^2+c^2+2abc< \left(a+b+c\right)^2+2=4-2=2\)
Do a,b,c là 3 cạnh của 1 tam giác nên dễ dàng suy ra được a,b,c < 1
Từ đó ta có (1-a)(1-b)(1-c)>0
Suy ra: 1−(a+b+c)+ab+bc+ac−abc>0
⇒2(ab+bc+ac)>2+abc
⇒2(ab+bc+ac)+a2+b2+c2>a2+b2+c2+2abc+2
Suy ra ĐCCM?
Theo bất đẳng thức tam giác: \(\left\{{}\begin{matrix}a+b>c\Leftrightarrow a+b+c>2c\Leftrightarrow2c< 2\Leftrightarrow c< 1\\b+c>a\Leftrightarrow a+b+c>2a\Leftrightarrow2a< 2\Leftrightarrow a< 1\\a+c>b\Leftrightarrow a+b+c>2b\Leftrightarrow2b< 2\Leftrightarrow b< 1\end{matrix}\right.\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)\(\Rightarrow\left(1-b-a+ab\right)\left(1-c\right)>0\) \(\Rightarrow1-c-b+bc-a+ac+ab-abc>0\) \(\Rightarrow1+bc+ac+ab>2+abc\Leftrightarrow bc+ac+ab>1+abc\) \(\Rightarrow2ab+2bc+2ac>2+2abc\Leftrightarrow\left(a+b+c\right)^2>2+2abc+a^2+b^2+c^2\) \(\Rightarrow a^2+b^2+c^2+2abc+2< 4\Leftrightarrow a^2+b^2+c^2+2abc< 2\)(đpcm)