Tìm giá trị của x để các biểu thức sau có cùng số trị:
6x+5/12x+9+3x-7/9-12x và 4x^2+10x-7/16x^2-9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{6x+5}{12x+9}-\frac{3x-7}{12x-9}=\frac{4x^2+10x-7}{16x^2-9}.\)
\(\Leftrightarrow\frac{\left(6x+5\right)\left(12x-9\right)-\left(3x-7\right)\left(12x+9\right)}{\left(3.4.x\right)^2-\left(3.3\right)^2}=\frac{4x^2+10x-7}{16x^2-9}\)
\(\Leftrightarrow\frac{72x^2+6x-45-\left(36x^2-57x-63\right)}{3^2\left(16x^2-9\right)}=\frac{4x^2+10x-7}{16x^2-9}\)
ĐK: \(16x^2-9\ne0\Leftrightarrow x^2\ne\left(\frac{3}{4}\right)^2\Rightarrow x\ne\pm\frac{3}{4}\)
\(\Leftrightarrow72x^2+6x-45-36x^2+57x+63=36x^2+90x-63\)
\(\Leftrightarrow27x=81\Leftrightarrow x=3\)
a: =x^4-3x^5+4x^8
b: =2x^3+2x^2+4x
c: =4x^2+8x-5
d: =2x+3x^2+7x^4
a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)
\(=-\left(x+1\right)^2+4\le4\)
Dấu ''='' xảy ra khi x = -1
Vậy GTLN là 4 khi x = -1
b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)
\(=-\left(2x-1\right)^2-2\le-2\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTLN B là -2 khi x = 1/2
c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)
\(=-\left(x-1\right)^2-14\le-14\)
Vâỵ GTLN C là -14 khi x = 1
Bài 8 :
b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 3
Vậy GTNN B là 2 khi x = 3
c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu ''='' xảy ra khi x = 1/2
Vậy ...
c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)
Dấu ''='' xảy ra khi x = 6
Vậy ...
\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)
\(minA=4\Leftrightarrow x=2\)
\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)
\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)
\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)
\(minC=-8\Leftrightarrow x=-1\)
\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)
\(maxD=-4\Leftrightarrow x=1\)
\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)
\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)
\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)
\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)
\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)
\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)
\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(\dfrac{6x+5}{12x+9}+\dfrac{3x-7}{9-12x}=\dfrac{4x^2+10x-7}{16x^2-9}\)
\(\Leftrightarrow\dfrac{6x+5}{3\left(4x+3\right)}-\dfrac{3x-7}{3\left(4x-3\right)}=\dfrac{12x^2+30x-21}{3\left(4x-3\right)\left(4x+3\right)}\)
\(\Leftrightarrow\left(6x+5\right)\left(4x-3\right)-\left(3x-7\right)\left(4x+3\right)=12x^2+30x-21\)
\(\Leftrightarrow24x^2-18x+20x-15-\left(12x^2+9x-28x-21\right)=12x^2+30x-21\)
\(\Leftrightarrow24x^2+2x-15-12x^2+19x+21=12x^2+30x-21\)
=>31x+6=30x-21
=>x=-27