Giải bất phương trình:
\(|x^2-9x+14|+3x>x^2-4\)
GIẢI GIÚP MK NHA M.N! THANKS!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu \(x^2-9x+14=\left(x-7\right)\left(x-2\right)\ge0\)
\(\Leftrightarrow\)\(x\ge7;\)\(x\le2\)
thì \(\left|x^2-9x+14\right|=x^2-9x+14\)
Khi đó bpt trở thành: \(x^2-9x+14+3x>x^2-4\)
\(\Leftrightarrow\)\(-6x>-18\)
\(\Leftrightarrow\) \(x< 3\)(thỏa mãn)
Nếu \(x^2-9x+14=\left(x-7\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\)\(2< x< 7\)
thì \(\left|x^2-9x+14\right|=-x^2+9x-14\)
Khi đó bpt trở thành: \(-x^2+9x-14+3x>x^2-4\)
\(\Leftrightarrow\)\(-2x^2+12x-10>0\)
\(\Leftrightarrow\) \(x^2-6x+5< 0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-5\right)< 0\)
\(\Leftrightarrow\) \(1< x< 5\) (thỏa mãn)
Vậy...
\(\hept{\begin{cases}\left(x+1\right)\left(2y+3\right)=5\\\left(x+2\right)\left(3y-1\right)=-4\end{cases}\Rightarrow x+1=\frac{5}{2y+3}\Leftrightarrow x+2=\frac{8+2y}{2y+3}}\)
\(\Leftrightarrow\left(x+2\right)\left(3y-1\right)=\left(\frac{8+2y}{2y+3}\right)\left(3y-1\right)=-4\)
\(\Leftrightarrow\left(8+2y\right)\left(3y-1\right)=-8y-12\\ \Leftrightarrow6y^2+30y+4=0\)
\(\Rightarrow\orbr{\begin{cases}y=\frac{-15+\sqrt{201}}{6}\\y=\frac{-15-\sqrt{201}}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-83-5\sqrt{201}}{8}\\x=\frac{-83+5\sqrt{201}}{8}\end{cases}}\)
cảm ơn nha! mk bt cách làm rùi nhưng mà bạn tính x sai mất rùi! dù sao cũng camon nhìu lắm!!! ^ ^
a) \(\Leftrightarrow\left(-63x^2+78x-15\right)+\left(63x^3+x-20\right)=44\)
\(\Leftrightarrow-63x^2+78x-15+63x^2+x-20=44\)
\(\Leftrightarrow79x-35=44\)
\(\Leftrightarrow79x=44+35\)
\(\Leftrightarrow79x=79\)
\(\Leftrightarrow x=1\)
b) \(\Leftrightarrow\left(x^2+3x+2\right).\left(x+5\right)-x^2.\left(x+8\right)=27\)
\(\Leftrightarrow x.\left(x^2+3x+2\right)+5.\left(x^2+3x+2\right)-x^3-8x^2=27\)
\(\Leftrightarrow x^3+3x^2+2x+5x^2+15x+10-x^3-8x^2=27\)
\(\Leftrightarrow17x+10=27\)
\(\Leftrightarrow17x=17\)
\(\Leftrightarrow x=1\)
\(\Leftrightarrow\left|x^2-9x+14\right|>x^2-3x-4\)
Trường hợp 1: \(\left\{{}\begin{matrix}x^2-9x+14>0\\x^2-3x-4< =0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left(-\infty;2\right)\cup\left(7;+\infty\right)\\-1< =x< =4\end{matrix}\right.\)
\(\Leftrightarrow x\in[-1;2)\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x^2-3x-4>=0\\\left(x^2-9x+14-x^2+3x+4\right)\left(x^2-9x+14+x^2-3x-4\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)\left(x+1\right)>=0\\\left(-6x+18\right)\left(2x^2-12x+10\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\in[-\infty;-1)\cup[4;+\infty)\\\left(x-3\right)\left(x^2-6x+5\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\in[-\infty;-1)\cup[4;+\infty)\\x\in[-\infty;1]\cup\left(3;5\right)\end{matrix}\right.\Leftrightarrow x\in[-\infty;-1)\cup[4;5)\)