giải pt
\(\dfrac{2}{x-1}\)>1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow x^2-2x+12-8-x^2=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow-2x=-4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
b) Ta có: \(\left|2x+6\right|-x=3\)
\(\Leftrightarrow\left|2x+6\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy: S={-3}
a) \(\left(2x+1\right)^2-\left(x+2\right)^2>0\)
\(\Leftrightarrow\left(2x+1-x-2\right)\left(2x+1+x+2\right)>0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\3x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\3x+3< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
Vậy tập nghiệm của bất phương trình là x > 1 hoặc x < -1
b) Sửa lại rồi làm câu b nèk\(\dfrac{5x-3x}{5}+\dfrac{3x+1}{4}>\dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\)
\(\Leftrightarrow4\left(5x-3x\right)+5\left(3x+1\right)>10\left(x+2x\right)-30\)\(\Leftrightarrow20x-12x+15x+5>10x+20x-30\)\(\Leftrightarrow20x-12x+15x-10x-20x>-30-5\)\(\Leftrightarrow-7x>-35\)
\(\Leftrightarrow x< 5\)
c) \(\dfrac{-1}{2x+3}< 0\)
dễ nhé mình học bài hóa mai kt 15 phút nên ko có time để giúp
ĐKXĐ : \(x\ne\pm1\)
PT : \(\Leftrightarrow\dfrac{x-1-x^2-x+2}{x+1}=\dfrac{x+1-\left(x+2\right)\left(x-1\right)}{x-1}\)
\(\Leftrightarrow\dfrac{1-x^2}{x+1}=1-x=\dfrac{3-x^2}{x-1}\)
\(\Leftrightarrow x^2-3=\left(x-1\right)^2=x^2-2x+1\)
\(\Leftrightarrow-2x=-4\)
\(\Leftrightarrow x=2\left(TM\right)\)
Vậy ...
ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(\dfrac{x-1}{x+1}-\dfrac{x^2+x-2}{x+1}=\dfrac{x+1}{x-1}-x-2\)
\(\Leftrightarrow\dfrac{x-1-x^2-x+2}{x+1}-\dfrac{x+1}{x-1}+x+2=0\)
\(\Leftrightarrow\dfrac{-x^2+1}{x+1}-\dfrac{x+1}{x-1}+x+2=0\)
\(\Leftrightarrow\dfrac{-\left(x^2-1\right)}{x+1}-\dfrac{x+1}{x-1}+x+2=0\)
\(\Leftrightarrow\dfrac{-\left(x-1\right)\left(x+1\right)}{x+1}-\dfrac{x+1}{x-1}+x+2=0\)
\(\Leftrightarrow-\left(x-1\right)-\dfrac{x+1}{x-1}+x+2=0\)
\(\Leftrightarrow\dfrac{-\left(x-1\right)^2}{x-1}-\dfrac{x+1}{x-1}+\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=0\)
Suy ra: \(-\left(x^2-2x+1\right)-x-1+x^2-x+2x-2=0\)
\(\Leftrightarrow-x^2+2x-1-x-1+x^2+x-2=0\)
\(\Leftrightarrow2x-4=0\)
\(\Leftrightarrow2x=4\)
hay x=2(nhận)
Vậy: S={2}
ĐKXĐ: \(x\ne\pm1\)
\(\dfrac{x+1}{X-1}-\dfrac{x-1}{X+1}=\dfrac{4}{x^2-1}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)^2}{x^2-1}-\dfrac{\left(x-1\right)^2}{x^2-1}=\dfrac{4}{x^2-1}\)
\(\Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=4\)
\(\Leftrightarrow x^2+2x+1-x^2+2x-1=4\)
\(\Leftrightarrow4x=4\)
\(\Leftrightarrow x=1\)(loại)
Vậy phương trình vô nghiệm
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=\left(x+3\right)\left(x+1\right)\)
\(\Leftrightarrow x^2+4x+3=x^2-3x+2\)
=>7x=-1
hay x=-1/7
`1/x+1/(x+2)=5/12`
ĐK:`x ne 0,x ne -2`
`<=>(x+2+x)/(x^2+2x)=5/12`
`<=>(2x+2)/(x^2+2x)=5/12`
`<=>24x+24=5x^2+10x`
`<=>5x^2-14x-24=0`
Ta có:`Delta'=49+24.5`
`=49+120=169`
`=>x_1=-6/5,x_2=4`
Vậy `S={4,-6/5}`
$ĐKXĐ : x \neq 0, x \neq -2$
Ta có : $\dfrac{1}{x} + \dfrac{1}{x+2} = \dfrac{5}{12}$
$\to \dfrac{2x+2}{x.(x+2)} = \dfrac{5}{12}$
$\to (2x+2).12 = x.(x+2).5$
$\to 24x + 24 = 5x^2 + 10x$
$\to 5x^2 - 14x - 24 = 0 $
$\to (x-4).(5x+6) = 0 $
S\to$ \(\left[{}\begin{matrix}x=4\\x=-\dfrac{6}{5}\end{matrix}\right.\) ( thỏa mãn ĐKXĐ )
Vậy :....
\(\dfrac{2}{x-1}>1\)
\(\Leftrightarrow\dfrac{2}{x-1}-1>0\)
\(\Leftrightarrow\dfrac{2-x+1}{x-1}>0\)
\(\Leftrightarrow\dfrac{3-x}{x-1}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3-x>0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}3-x< 0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 3\\x>1\end{matrix}\right.\\\left\{{}\begin{matrix}x>3\\x< 1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow1< x< 3\)
:")))))))
À bổ xung thêm cái đkxđ: \(x\ne1\)