K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

Toán lớp 8 nha

14 tháng 12 2021

\(=\dfrac{2x^2-x-x-1+2-x^2}{x-1}=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\)

23 tháng 4 2021

viết p/s như nào vậy bạn

23 tháng 4 2021

undefined

undefined

undefined

a: =>4x^2-4x+1+7>4x^2+3x+1

=>-4x+8>3x+1

=>-7x>-7

=>x<1

b: \(\Leftrightarrow12x+1>=36x+12-24x-3\)

=>1>=9(loại)

19 tháng 2 2023

b) \(Q=\dfrac{27-2x}{12-x}=\dfrac{2.\left(12-x\right)+3}{12-x}=2+\dfrac{3}{12-x}\)

Để Q đạt max 

thì \(\dfrac{3}{12-x}\) phải max nên 12 - x phải min và 12 - x > 0 

lại có \(x\inℤ\) 

nên 12 - x = 1 

<=> x = 11 

Khi đó Q = 17

Vậy Qmax = 5 khi x = 11 

2 tháng 3 2023

tìm các số nguyên x để mỗi phân số sau đây là số nguyên

2 tháng 3 2023

Ngô Hải Nam ơi bn trả lời giúp mik ik

bài đó là bài 4^* tìm các số nguyên x để mỗi phân số sau đây là số nguyên

\(=\left(\dfrac{88}{132}-\dfrac{33}{132}+\dfrac{60}{132}\right):\left(\dfrac{55}{132}-\dfrac{132}{132}-\dfrac{84}{132}\right)\)

\(=\dfrac{115}{-161}=-\dfrac{115}{161}\)

6 tháng 11 2021

\(\Rightarrow x+\dfrac{1}{6}=\dfrac{3}{4}\\ \Rightarrow x=\dfrac{7}{12}\)

22 tháng 3 2023

\(\dfrac{5}{x+2}-\dfrac{x-1}{x-2}=\dfrac{12}{x^2-4}+1\left(x\ne-2;x\ne2\right)\)

\(< =>\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

suy ra

`5x-10-(x^2 +2x-x-2)=12+x^2 -4`

`<=>5x-10-x^2 -2x+x+2-12-x^2 +4=0`

`<=>-x^2 -x^2 +5x-2x+x-10+2+4=0`

`<=>-x^2 +4x-4=0`

`<=>x^2 -4x+4=0`

`<=>(x-2)^2 =0`

`<=>x-2=0`

`<=>x=2(ktmđk)`

vậy phương trình vô nghiệm

NV
22 tháng 3 2023

ĐKXĐ: \(x\ne\pm2\)

\(\dfrac{5\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow5\left(x-2\right)-\left(x-1\right)\left(x+2\right)=12+\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow5x-10-\left(x^2+x-2\right)=12+x^2-4\)

\(\Leftrightarrow-x^2+4x-8=x^2+8\)

\(\Leftrightarrow2x^2-4x+16=0\)

\(\Leftrightarrow2\left(x-1\right)^2+14=0\)

Do \(\left\{{}\begin{matrix}2\left(x-1\right)^2\ge0\\14>0\end{matrix}\right.\) ;\(\forall x\)

\(\Rightarrow2\left(x-1\right)^2+14>0\)

Vậy phương trình đã cho vô nghiệm