K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABDC có 

E là trung điểm của đường chéo BC

E là trung điểm của đường chéo AD

Do đó: ABDC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABDC là hình chữ nhật

b: Ta có: ΔABC vuông tại A

mà AE là đường trung tuyến ứng với cạnh huyền BC

nên AE=BE=CE

Xét tứ giác AECF có 

N là trung điểm của đường chéo FE

N là trung điểm của đường chéo AC

Do đó: AECF là hình bình hành

mà AE=CE

nên AECF là hình thoi

22 tháng 12 2021

a: Xét tứ giác ABDC có

I là trung điểm của AD

I là trung điểm của BC

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

25 tháng 12 2021

a,Xét tứ giác ABDC có:

     D đối xứng với A qua M nên :

        DA=DC(1)

      M là trung điểm BC nên:

        BM=MC(2)

Từ (1)và (2) suy ra:

 tứ giác ABDC là hình chữ nhật(đpcm)

b, vì ABDC là hình chữ nhật nên:

AB=DC và AB//DC 

mà DC=FC và F trên tia DC 

=>AB=FC và AB//FC

 vậy tứ giác ABCF là hình bình hành(đpcm)

 

 

 

 

 

 

 

12 tháng 12 2023

loading...  loading...  loading...  loading...  

12 tháng 12 2023

loading...  a) Tứ giác ABDC có:

M là trung điểm của BC (gt)

M là trung điểm của AD (gt)

⇒ ABDC là hình bình hành

Mà ∠BAC = 90⁰ (∆ABC vuông tại A)

⇒ ABDC là hình chữ nhật

b) Do ABDC là hình chữ nhật (cmt)

⇒ CD = AB (1)

Do B là trung điểm của AE (gt)

⇒ BE = AB = AE : 2 (2)

Từ (1) và (2) ⇒ CD = BE

Do ABDC là hình chữ nhật (cmt)

⇒ CD // AB

⇒ CD // BE

Tứ giác BEDC có:

CD // BE (cmt)

CD = BE (cmt)

⇒ BEDC là hình bình hành

c) Do ABDC là hình chữ nhật (cmt)

⇒ AC // BD

Do đó AC, BD, EK đồng quy là vô lý

Em xem lại đề nhé!

 

Xét tứ giác ABDC có 

O là trung điểm của BC

O là trung điểm của AD

Do đó: ABDC là hình bình hành

a: Xét ΔABC có 

M là trung điểm của AC

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AB

hay AMNB là hình thang

mà \(\widehat{MAB}=90^0\)

nên AMNB là hình thang vuông

11 tháng 7 2023

a) Xét ∆CMA và ∆BMD:

Góc CMA= góc BMD (đối đỉnh)

MA=MD (gt)

MC=MB (M là trung điểm BC)

=> ∆CMA=∆BMD(c.g.c)

=> góc CAM = góc BDM và CA=DB

Mà 2 góc CAM và góc BDM nằm ở vị trí so lo trong nên CA//DB

=> CABD là hình bình hành

Lại có góc CAB = 90 độ (gt)

=> ACDB là hình chữ nhật

b) Vì E là điểm đối xứng của C qua A nên EAB=90độ=DBA

Mà 2 góc này ở bị trí so le trong nên AE//DB

Lại có AE=BD(=CA)

=> AEBD là hình bình hành

10 tháng 12 2021

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)

Do đó: ADME là hình chữ nhật

a: Xét tứ giác AHBD có

M là trung điểm của AB

M là trung điểm của HD

Do đó: AHBD là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBD là hình chữ nhật

b: Xét ΔAEB có 

H là trung điểm của EB

M là trung điểm của AB

Do đó: HM là đường trung bình

=>HM//AE và HM=AE/2

hay HD//AE và HD=AE

hay ADHE là hình bình hành