Cho a,b tm: \(|a|\ge2; |b|\ge2\) CMR
\(a^2+1)(b^2+1)\ge (a+b)(ab+1)+5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ làm sơ sơ, có gì bạn sửa lại
Ta có: \(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\)
Đặt a ; b và c = 2 .
Thế số vào biểu thức ta có:
\(\frac{2}{\sqrt{2^3+1}}+\frac{2}{\sqrt{2^3+1}}+\frac{2}{\sqrt{2^3+1}}\)
\(\Leftrightarrow\frac{2}{\left(2^3+1\right)^2}+\frac{2}{\left(2^3+1\right)^2}+\frac{2}{\left(2^3+1\right)^2}\)
\(\Leftrightarrow\frac{2}{\left(2^3+1\right)^2}.3\Leftrightarrow\frac{2}{\left(8+1\right)^2}.3\Leftrightarrow\frac{2}{9^2}\ge2\)
Ta có ĐPCM
\(\frac{1}{1+a}=\)\(1-\frac{1}{1+b}+1-\frac{1}{1+c}=\frac{b}{1+b}+\frac{c}{1+c}\ge\frac{2\sqrt{bc}}{\sqrt{\left(1+b\right)\left(1+c\right)}}\)
tt nhan vao ta co
\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow abc\le\frac{1}{8}\)
a) Áp dụng BĐT Cauchy-Schwarz dạng Engel: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Tương tự:\(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c};\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)
Cộng theo vế 3 BĐT trên rồi chia cho 2 ta thu được đpcm
Đẳng thức xảy ra khi \(a=b=c\)
b)Đặt \(a+b=x;b+c=y;c+a=z\). Cần chứng minh:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
Cách làm tương tự câu a.
c) \(VT=\Sigma_{cyc}\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\Sigma_{cyc}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\le\frac{1}{16}\Sigma\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
Đẳng thức xảy ra khi \(a=b=c=\frac{3}{4}\)
d) Em làm biếng quá anh làm nốt đi:P
\(\left(x+y\right)^3+4xy-2\ge0\) (1)
Ta có: \(\left(x-y\right)^2\ge0\) \(\forall x;y\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\Leftrightarrow x^2+y^2+2xy-4xy\ge0\)
\(\Leftrightarrow\left(x+y\right)^2-4xy\ge0\) (2)
Cộng vế với vế của (1) và (2) ta được:
\(\left(x+y\right)^3+\left(x+y\right)^2-2\ge0\)
\(\Leftrightarrow S^3+S^2-2\ge0\Leftrightarrow\left(S-1\right)\left(S^2+2S+2\right)\ge0\)
Mặt khác \(S^2+2S+2=\left(S+1\right)^2+1>0\) \(\forall S\)
\(\Rightarrow S-1\ge0\Rightarrow S\ge1\)
\(\Rightarrow S_{min}=1\) khi \(x=y=\frac{1}{2}\)
b) \(\hept{\begin{cases}x+my=m+1\left(1\right)\\mx+y=2m\left(2\right)\end{cases}}\)
từ \(\left(2\right)\) ta có: \(y=2m-mx\) \(\left(3\right)\)
thay (3) vào (1) ta được \(x+m\left(2m-mx\right)=m+1\)
\(\Leftrightarrow x+2m^2-m^2x=m+1\)
\(\Leftrightarrow x\left(1-m^2\right)=m+1-2m^2\)
\(\Leftrightarrow x\left(1-m^2\right)=-m^2+1\)
\(\Leftrightarrow x\left(m^2-1\right)=m^2-1\) \(\left(4\right)\)
để hpt có nghiệm duy nhất, pt (4) pải có nghiệm duy nhất
\(\Leftrightarrow m^2-1\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)
từ (4) ta có \(x=\frac{m^2-1}{m^2-1}=1\)
từ (3) ta có: \(y=2m-m\)
\(y=m\)
vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;m\right)\)
theo bài ra \(\hept{\begin{cases}x\ge2\\y\ge1\end{cases}}\)
\(\Leftrightarrow m\ge1\)
vậy....
a) khi m = 2 hpt có dạng
\(\hept{\begin{cases}x+2y=3\\2x+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3-2y\\2\left(3-2y\right)+y=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3-2y\\6-4y+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-3y=-2\\x=3-2y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{5}{3}\end{cases}}\)
vậy....
b) Giả sử:
\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow2a^4+2b^4-a^4-a^3b-ab^3-b^4\ge0\)
\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)+\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) BĐT đúng
\(\Leftrightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
Mà \(a+b\ge2\)
\(\Rightarrow2\left(a^4+b^4\right)\ge2\left(a^3+b^3\right)\)
\(\Rightarrow a^4+b^4\ge a^3+b^3\)
Dấu = xảy ra khi \(a=b=1\)
*Th1: Xét a;b < 0 thì \(a\le-2;b\le-2\)
khi đó VF âm và VT luôn dương nên BĐT luôn xảy ra.
*Th2: Xét a;b > 0 thì \(a\ge2;b\ge2\).
\(BDT\Leftrightarrow2a^2b^2+2a^2+2b^2+2\ge2\left(ab+1\right)\left(a+b\right)+10\)
\(\Leftrightarrow\left[\left(a+b\right)^2+a^2b^2-2ab\left(a+b\right)\right]+\left(a^2b^2-8ab+16\right)+\left(a^2+b^2-2ab\right)+8ab-2a-2b-24\ge0\)
\(\Leftrightarrow\left(a+b-ab\right)^2+\left(ab-4\right)^2+\left(a-b\right)^2+\left(a-2\right)\left(b-2\right)+7\left(ab-4\right)\ge0\)
( đúng)
Vậy BĐT được chứng minh.
tks