chứng minh rằng với mọi số a, ta có :\(\dfrac{a^2+a+1}{a^2-a+1}>0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a2 +a+1=(a2 +2a1/2+1/4 )+ 3/4 =(a+1/2)2 +3/4 >0
Tương tự: a2 -a+1=( a-1/2 )2 +3/4 >0
Vậy suy ra điều cần cm
Ta có :a ²+a+1=(a ²+a+1/4)+3/4=(a+1/2) ²+3/4
a ²-a+1=(a ²-a+1/4)+3/4=(a-1/2) ²+3/4
Vì (a-1/2) ² ≥ 0;(a-1/2)²≥ 0 với mọi a nên suy ra điều phải chứng minh
a)\(a^2+ab+b^2=a^2+\dfrac{2ab}{2}+\left(\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\)
\(=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\forall a,b\)
b)\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\forall a,b\)
C1:Áp dụng Bất đẳng thức AM-GM ta có:
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1^2}{a+b}+\dfrac{1^2}{b+c}+\dfrac{1^2}{c+a}\ge\)
\(\ge\dfrac{\left(1+1+1\right)^2}{a+b+b+c+c+a}=\dfrac{9}{2\left(a+b+c\right)}\)
\(\Rightarrow A=\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\left(a+b+c\right).\dfrac{9}{2\left(a+b+c\right)}=\dfrac{9}{2}\)Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
C2: Khai triển
\(A=\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\)
\(=1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}\) (bn tự khai triển đầy đủ nha)
Áp dụng BĐT Nesbitt ta có:
\(A=\left(1+1+1\right)+\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\ge\)
\(\left(1+1+1\right)+\dfrac{3}{2}=\dfrac{9}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
\(A=\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}\)\(=\frac{a}{a^2+1}+\frac{a^2+1}{4a}+\frac{9\left(a^2+1\right)}{4a}\)
\(\ge2\sqrt{\frac{a}{a^2+1}.\frac{a^2+1}{4a}}+\frac{9}{2}.\frac{a^2+1}{2a}\)
\(\ge2.\sqrt{\frac{1}{4}}+\frac{9}{2}.1=1+\frac{9}{2}=\frac{11}{2}\)
Dấu "=" xảy ra khi và chỉ khi \(x=1\)
\(\dfrac{a^2+a+1}{a^2-a+1}=\dfrac{a^2+2.a.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}}{a^2-2.a.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}}\)
\(=\dfrac{\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}{\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}>0\) ( luôn đúng)