Chứng minh:a\(^2\) + b\(^2\) +1 ≥ ab + a + b
Cố gắng lên nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: a^3+b^3+c^3-3abc
=(a+b)^3+c^3-3ab(a+b)-3bac
=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2)-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
b: Đề sai rồi bạn
c: 2(a+b+c)*(b/2+c/2-a/2)
=(a+b+c)(b+c-a)
=(b+c)^2-a^2
=c^2+2bc+c^2-a^2
1) a^2 + b^2 + 2a - 2b - 2ab = (a^2 - 2ab + b^2) + (2a-2b) = (a-b)^2 + 2(a-b) = (a-b)(a-b+2)
2) 4a^2 - 4b^2 - 4a + 1 = ( 4a^2 - 4a +1) - 4b^2 = (2a-1)^2 - 4b^2 = (2a-1-2b)(2a-1+2b)
3) a^3+6a^2+12a+8= (a^3+8)+(6a^2+12a)= (a+2)(a^2-2a+4)+6a(a+2)=(a+2)(a^2-2a+4+6a)=(a+2)(a^2+4a+4)=(a+2)(a+2)^2=(a+2)^3
a) x/3 - 1/4 = - 5/6
x/3 = -5/6 + 1/4
x/3 = -7/12
x = -7/12 :3
x = -7/36
\(a^2+b^2+1\ge ab+a+b\)
\(<=>2a^2+2b^2+2\geq 2ab+2a+2b\\<=>(a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)\geq 0\\<=>(a-b)^2+(a-1)^2+(b-1)^2\geq 0\)
$\Rightarrow $ \(a^{2}+b^{2}\geq 2ab\) (1)
$\Rightarrow $ \(a^{2}+1\geq 2a\) (2)
$\Rightarrow $ \(b^{2}+1\geq 2b\) (3)
(1), (2) và (3)\(\Rightarrow a^{2}+b^{2}+1\geq ab+a+b\)