Tim nghiệm của đa thức H(x) biết H(x)=\(^{2x^2-2x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại xem đề có nhầm lẫn không nhé. Mình ấn máy tính ra kết quả là số ảo nhé
H(x)=2x^2+5x
nghiệm của H(x) là :
H(x)=0 khi x=0
vì \(2.0^2+5.0=0\)
vậy nghiệm của H(x) là 0
đúng chưa bạn nếu đúng thì kết bạn với mình nhé
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
a: \(H\left(x\right)=2x^3+\dfrac{1}{3}x-13-2x^3+\dfrac{3}{2}x-9=\dfrac{11}{6}x-22\)
c: Đặt H(x)=0
=>11/6x=22
hay x=22:11/6=12
b: H(3)=11/2-22<>0
=>x=3 không là nghiệm
a) \(f\left(x\right)=x^2-2x-5x^4+6\)
\(=-5x^4+x^2-2x+6\)
\(g\left(x\right)=x^3-5x^4+3x^2-3\)
\(=-5x^4+x^3+3x^2-3\)
b) \(f\left(x\right)+g\left(x\right)=-5x^4+x^2-2x+6-5x^4+x^3+3x^2-3\)
\(=-10x^4+4x^2+x^3-2x+3\)
\(f\left(x\right)-g\left(x\right)=-5x^4+x^2-2x+6+5x^4-x^3-3x^2+3\)
\(=-2x^2-x^3-2x+9\)
c) Thay x = 1 vào f(x) ta có:
\(f\left(1\right)=1-2-5+6=0\)
Vậy x = 1 là nghiệm của f(x)
d) \(h\left(x\right)+f\left(x\right)-g\left(x\right)=-2x^2-x+9\)
\(\Rightarrow h\left(x\right)=-2x^2-x+9+g\left(x\right)-f\left(x\right)\)
\(\Rightarrow h\left(x\right)=-2x^2-x+9+2x^2+x^3+2x-9\)
\(\Rightarrow h\left(x\right)=x^3+x\)
e) Ta có: \(x^3+x=0\)
\(\Rightarrow x^2\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy x = 0, x = -1 là nghiệm của H(x)
a: \(H\left(x\right)=-x^5+x^4-3x^3+2x^2-5x-2+x^5-x^4+3x^3-2x^2+3x+11\)
=-2x+9
Đặt H(x)=0
=>-2x+9=0
hay x=-9/2
b: Vì H(9)<>0 nên x=9 ko là nghiệm của H(x)
a: H(x)=−x5+x4−3x3+2x2−5x−2+x5−x4+3x3−2x2+3x+11�(�)=−�5+�4−3�3+2�2−5�−2+�5−�4+3�3−2�2+3�+11
=-2x+9
Đặt H(x)=0
=>-2x+9=0
hay x=-9/2
b: Vì H(9)<>0 nên x=9 ko là nghiệm của H(x)
Cho H(x)=0
=>2x^2-2x=0
2x*(x-1)=0
2x=0 hoặc x-1=0
x=0+1
x=1
vậy nghiệm của đa thức 2x^2-2x là 0 hoặc 1
H(x)\(=2x^2-2x\)
Giả sử H(x)=0\(\Rightarrow2x^2-2x=0\)
\(\Rightarrow2x.x-2x=0\)
\(\Rightarrow x\left(2x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy x=0 và x=1 là nghiệm của đa thức H(x)