\(y=sin^4x+cos^4x+sin2x\)
GTLN và GTNN là = ?
Mn giải giúp mình với mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
$y=\sin ^4x+\cos ^4x=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x$
$=1-\frac{1}{2}(2\sin x\cos x)^2=1-\frac{1}{2}\sin ^22x$
Vì: $0\leq \sin ^22x\leq 1$
$\Rightarrow 1\geq 1-\frac{1}{2}\sin ^22x\geq \frac{1}{2}$
Vậy $y_{\max}=1; y_{\min}=\frac{1}{2}$
3.
$0\leq |\sin x|\leq 1$
$\Rightarrow 3\geq 3-2|\sin x|\geq 1$
Vậy $y_{\min}=1; y_{\max}=3$
\(M=\sin^6x+\cos^6x\)(1)
Có công thức: \(y=\sin^{2n}x+\cos^{2n}x\)
\(\Rightarrow\max\limits_y=1;\min\limits_y=\dfrac{1}{2^{n-1}}\)
\(\Rightarrow\left(1\right)\) có \(\max\limits_M=1\)và \(\min\limits_M=\dfrac{1}{2^2}=\dfrac{1}{4}\)
1. Ta có: \(-1\le sinx\le1\)
\(\Rightarrow-3\le y\le3\) (hàm đã cho đồng biến trên \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)
\(y_{min}=-3\) khi \(sinx=-1\)
\(y_{max}=3\) khi \(sinx=1\)
2.
\(y=1-sin^2x-2sinx=2-\left(sinx+1\right)^2\)
Do \(-1\le sinx\le1\Rightarrow0\le sinx+1\le2\)
\(\Rightarrow-2\le y\le2\)
\(y_{min}=-2\) khi \(sinx=1\)
\(y_{max}=2\) khi \(sinx=-1\)
3.
\(y=1-cos^2x+cos^4x=\left(cos^2x-\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Rightarrow y\ge\frac{3}{4}\Rightarrow y_{min}=\frac{3}{4}\) khi \(cos^2x=\frac{1}{2}\)
\(y=1+cos^2x\left(cos^2x-1\right)\le1\) do \(cos^2x-1\le0\)
\(\Rightarrow y_{max}=1\) khi \(\left[{}\begin{matrix}cos^2x=1\\cos^2x=0\end{matrix}\right.\)
4.
\(y=\left(sin^2x+cos^2x\right)^2-2\left(sinx.cosx\right)^2+sinx.cosx\)
\(y=1-\frac{1}{2}sin^22x+\frac{1}{2}sin2x\)
\(y=\frac{9}{8}-\frac{1}{2}\left(sinx-\frac{1}{2}\right)^2\le\frac{9}{8}\)
\(y_{max}=\frac{9}{8}\) khi \(sinx=\frac{1}{2}\)
\(y=\frac{1}{2}\left(sinx+1\right)\left(2-sinx\right)\ge0;\forall x\)
\(\Rightarrow y_{min}=0\) khi \(sinx=-1\)
x2 - 4x + 2 = ( x2 - 4x + 4 ) - 2 = ( x - 2 )2 - 2 ≥ -2 ∀ x
Dấu "=" xảy ra <=> x = 2 . Vậy GTNN của bthuc = -2
x^2 - 4x + 2
= x^2 - 4x + 4 - 2
= ( x - 2 ) ^2 - 2
\(\left(x-2\right)^2\ge0\forall x\)
\(\left(x-2\right)^2-2\ge-2\)
Dấu = xảy ra khi và chỉ khi
x - 2 = 0
x = 0 + 2
x = 2
vậy min = -2 khi và chỉ khi x = 2
pt <=> 1+cos2x + cos3x + cosx = 0
<=> 2cos²x + 2cos2x.cosx = 0
<=> 2cosx.(cos2x + cosx) = 0
<=> 4cosx.cos(3x/2).cos(x/2) = 0 <=>
[cosx = 0
[cos(3x/2) = 0 (tập nghiệm cos3x/2 = 0 chứa tập nghiệm cosx/2 = 0)
<=>
[x = pi/2 + kpi
[3x/2 = pi/2 + kpi
<=>
[x = pi/2 + kpi
[x = pi/3 + 2kpi/3 (k thuộc Z)
sin^2 x + sin^2 2x + sin^2 3x + sin^2 4x =
[1-cos(2x)]/2+ [1-cos(4x)]/2+[1-cos(6x)]/2+[1-cos(8x)]/... =
2- [ cos(2x)+cos(4x)+cos(6x)+cos(8x)]/2 =
2- 1/2· [ cos(2x)+cos(8x)]+cos(4x)+cos(6x)]=
2- 1/2· [ 2·cos(-3x)·cos(5x) + 2· cos(-x)·cos(5x)]=
2- cos(5x)· [cos(3x)+cosx] =
2- cos(5x)· 2·cos(2x)·cosx =
2- 2·cosx·cos(2x)·cos(5x)= 2 <-->
*cosx=0 --> x= pi/2+ k·pi with k thuộc Z or
*cos(2x)=0 --> x= pi/4 + k·pi/2 with k thuộc Z or
* cos(5x)=0 --> x= pi/10+ k·pi/5 with k thuộc Z
Có: y=sin^4x−cos^4x
= (sin^2x−cos^2x)(sin^2x+cos^2x)
= −cos2x
=> −1≤y≤1
=> min y=−1⇔cos2x=1⇔x=kπ
max y=1⇔cos2x=−1⇔x=π2+kπ
Vậy min y = -1; max y=1
\(y=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+sin2x\)
\(=1-\dfrac{1}{2}sin^22x+sin2x\)
Đặt \(sin2x=t\in\left[-1;1\right]\Rightarrow y=f\left(t\right)=-\dfrac{1}{2}t^2+t+1\)
\(-\dfrac{b}{2a}=1\) ; \(f\left(-1\right)=-\dfrac{1}{2}\) ; \(f\left(1\right)=\dfrac{3}{2}\)
\(\Rightarrow y_{min}=-\dfrac{1}{2}\) khi \(sin2x=-1\)
\(y_{max}=\dfrac{3}{2}\) khi \(sin2x=1\)