Cho tam giác ABC cân tại A . Kẻ AM vuông góc BC tại M
a) Cm : MB = MC
b) Biết AB = 20cm ; BC = 24 cm . Tính độ dài MB và AM
c) Kẻ MH vuông góc AB và MK vuông góc AC . CM tam giác AHK cân tại A . Tính độ dài MH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)vì tam giác ABC cân tại A
=>AB=AC và góc ABC=góc ACB
xét tam giác ABM và tam giác ACM có
góc AMB=góc AMC(= 90 độ)
AB=AC
góc ABM=góc ACM
=>tam giác ABM = tam giác ACM (c/h-g/n)
=>MB=MC(2 cạnh tương ứng)
b)ta có BC=24
mà MB=MC
=>M là trung điểm của BC
=>BM=MC=24/2=12 cm
xét tam giác ABM vuông tại M,áp dụng định lý PY-ta go ta có:
\(AB^2=AM^2+BM^2\)
\(AM^2=AB^2-BM^2\)
\(AM^2=20^2-12^2\)
\(AM^2=400-144\)
AM^2=256
=>AM=16 cm
c)vì tam giác ABM = tam giác ACM(cmt)
=>góc BAM=góc CAM(2 góc tương ứng)
xét tam giác HAM và tam giác KAM có
góc AHM = góc AKM(= 90 độ)
cạnh AM chung
góc BAM=góc CAM
=>tam giác HAM = tam giác KAM(c/h-g/n)
=>AH=AK(2 cạnh tương ứng)
=>tam giác AHK cân tại A
d)mình không biết làm phàn này nha
a: Xét ΔABM và ΔACM có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là phân giác
nên AM là đường cao
c: Xét ΔAMD vuông tại D và ΔAME vuông tại E có
AM chung
\(\widehat{MAD}=\widehat{MAE}\)
Do đó: ΔAMD=ΔAME
Suy ra: AD=AE
a) Xét ΔAMB vuông tại M và ΔAMC vuông tại M có
AB=AC(ΔABC cân tại A)
AM chung
Do đó: ΔAMB=ΔAMC(cạnh huyền-cạnh góc vuông)
Suy ra: MB=MC(hai cạnh tương ứng)
b) Ta có: ΔAMB=ΔAMC(cmt)
nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
c) Xét ΔDMB vuông tại D và ΔEMC vuông tại E có
MB=MC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDMB=ΔEMC(cạnh huyền-góc nhọn)
Suy ra: DM=EM(hai cạnh tương ứng)
Xét ΔMDE có MD=ME(cmt)
nên ΔMDE cân tại M(Định nghĩa tam giác cân)
Phần a dựa vào hệ thức lượng trong tam giác vuông
Phần b chứng minh tam giác đồng dạng thì sẽ ra
Phần c, d tớ chưa nghĩ ra
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc với BC
d: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
góc HAM=góc KAM
Do đó: ΔAHM=ΔAKM
=>AH=AK
a,Xét\(\Delta\)ABM và \(\Delta\)ACM có :
\(\widehat{AMB}\)=\(\widehat{AMC}\)\(\left(=90^o\right)\)
AB=AC(GT)
AM :cạnh chung(gt)
Suy ra:\(\Delta\)ABM= \(\Delta\)ACM (ch-cgv)
=>MB=MC( 2 cạnh tương ứng)
b,Ta có MB=\(\dfrac{BC}{2}\) =\(\dfrac{24}{2}\) = 12
\(\Delta\) AMB vuông tại M có :
\(AM^2+BM^2=AB^2\) ( đl Pytago)
=>\(AM^2=AB^2-BM^2\)
= \(20^2-12^2\)
= \(16^2\)
=>AM=16