K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 4 2018

Lời giải:

Đề bài phải sửa lại là \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\) em nhé.

Sử dụng pp biến đổi tương đương. Ta có:

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\)

\(\Leftrightarrow \frac{b^2+1+a^2+1}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

\(\Leftrightarrow (ab+1)(a^2+b^2+2)\geq 2(a^2b^2+a^2+b^2+1)\)

\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)

\(\Leftrightarrow ab(a^2+b^2-2ab)+2ab-a^2-b^2\geq 0\)

\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\)

\(\Leftrightarrow (ab-1)(a-b)^2\geq 0\)

BĐT trên luôn đúng vì \(a,b\geq 1\rightarrow ab-1\geq 0\) và \((a-b)^2\geq 0\) )

Ta có đpcm.

Dấu bằng xảy ra khi \(a=b\) hoặc \(ab=1\)

10 tháng 4 2018

đề đúng mà

AH
Akai Haruma
Giáo viên
13 tháng 3 2022

Lời giải:
BĐT \(\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

$\Leftrightarrow (a^2+b^2+2)(ab+1)\geq 2(a^2b^2+a^2+b^2+1)$

$\Leftrightarrow a^3b+a^2+ab^3+b^2+2ab+2\geq 2a^2b^2+2a^2+2b^2+2$

$\Leftrightarrow a^3b+ab^3+2ab\geq 2a^2b^2+a^2+b^2$

$\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0$

$\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0$

$\Leftrightarrow (a-b)^2(ab-1)\geq 0$

Điều này luôn đúng với mọi $ab\geq 1$ 

Do đó ta có đpcm 

Dấu "=" xảy ra khi $a=b$ hoặc $ab=1$

17 tháng 3 2018

a)Svac-so:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2\left(đpcm\right)}\)

b)\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\)

\(\Leftrightarrow\dfrac{1}{a^2+1}-\dfrac{1}{ab+1}+\dfrac{1}{b^2+1}-\dfrac{1}{ab+1}\ge0\)

\(\Leftrightarrow\dfrac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{b\left(a-b\right)}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b}{\left(b^2+1\right)\left(ab+1\right)}-\dfrac{a}{\left(a^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b\left(a^2+1\right)-a\left(b^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{a^2b+b-ab^2-a}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{ab\left(a-b\right)-\left(a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\cdot\dfrac{ab-1}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)(luôn đúng)

3 tháng 5 2017

Ta có \(a\ge1;b\ge1\Rightarrow a\cdot b\ge1\) (1)

\(\Rightarrow\left(1+ab\right)\left(1+a^2\right)\left(1+b^2\right)>0\) (2)

Từ (1);(2)\(\Rightarrow\dfrac{\left(b-a\right)^2\left(ab-1\right)}{\left(1+ab\right)\left(1+a^2\right)\left(1+b^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{b-a}{1+ab}\left(\dfrac{b^2\cdot a-a^2b-b+a}{\left(1+a^2\right)\left(1+b^2\right)}\right)\ge0\)

\(\Leftrightarrow\dfrac{b-a}{1+ab}\left(\dfrac{a}{1+a^2}-\dfrac{b}{1+b^2}\right)\ge0\)

\(\Leftrightarrow\dfrac{ab-a^2}{\left(1+ab\right)\left(1+a^2\right)}-\dfrac{b^2-ab}{\left(1+ab\right)\left(1+b^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{ab-a^2+1-1}{\left(1+ab\right)\left(1+a^2\right)}-\dfrac{b^2-1-ab+1}{\left(1+ab\right)\left(1+b^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{1}{1+a^2}-\dfrac{1}{1+ab}+\dfrac{1}{1+b^2}-\dfrac{1}{1+ab}\ge0\)

\(\Rightarrow\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\) (đpcm)


3 tháng 5 2017

Ôn tập: Bất phương trình bậc nhất một ẩn

P/S: x thay = a , y thay = b nha

24 tháng 5 2022

\(ab+bc+ac=3\)

Ta có:

\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\) ( đúng với mọi \(ab\ge1\))

Giả sử:\(ab\ge1\)

\(\Rightarrow\dfrac{2}{ab+1}+\dfrac{1}{c^2+1}\ge\dfrac{2c^2+2+ab+1}{\left(ab+1\right)\left(c^2+1\right)}=\dfrac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\)

Giả sử: \(\dfrac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\ge\dfrac{3}{2}\)(đúng)

\(\Leftrightarrow2\left(2c^2+ab+3\right)\ge3\left(ab+1\right)\left(c^2+1\right)\)

\(\Leftrightarrow4c^2+2ab+6\ge3\left(abc^2+ab+c^2+1\right)\)

\(\Leftrightarrow4c^2+2ab+6\ge3abc^2+3ab+3c^2+3\)

\(\Leftrightarrow c^2-ab-3abc^2+3\ge0\)

\(\Leftrightarrow c^2-ab-3abc^2+ab+ac+bc\ge0\)   ( vì \(ab+ac+bc=3\) )

\(\Leftrightarrow c^2+ac+bc-3abc^2\ge0\)

\(\Leftrightarrow c+a+b-3abc\ge0\)

\(\Leftrightarrow c+a+b\ge3abc\)

Ta có:

\(3\left(c+a+b\right)=\left(ab+ac+bc\right)\left(c+a+b\right)\) ( vì \(ab+ac+bc=3\) )

Áp dụng BĐT AM-GM, ta có:

\(\left(ab+ac+bc\right)\left(c+a+b\right)\ge9abc\)

\(\Rightarrow a+b+c\ge3abc\)

\(\Rightarrow\) \(\dfrac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\ge\dfrac{3}{2}\) ( luôn đúng )

\(\Rightarrow\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\ge\dfrac{3}{2}\) ( đfcm )

Dấu "=" xảy ra khi \(a=b=c=1\)

 

 

24 tháng 5 2022

Hình như sai đề rồi bạn ạ, dấu ≥ phải là ≤

NV
28 tháng 1 2021

\(P=\dfrac{a^2}{ab+\dfrac{1}{b}}+\dfrac{b^2}{bc+\dfrac{1}{c}}+\dfrac{c^2}{ca+\dfrac{1}{a}}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ca+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}}\)

\(P\ge\dfrac{3\left(ab+bc+ca\right)}{ab+bc+ca+\dfrac{ab+bc+ca}{abc}}=\dfrac{3}{1+\dfrac{1}{abc}}=\dfrac{3abc}{1+abc}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

27 tháng 1 2021

Với a, b, c > 0 có:

\(P=\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\\ =\dfrac{a^2}{a\left(b+2c\right)}+\dfrac{b^2}{b\left(c+2a\right)}+\dfrac{c^2}{c\left(a+2b\right)}\)

\(\Rightarrow P\ge\dfrac{\left(a+b+c\right)^2}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\)

chọn \(\alpha=\dfrac{1}{abc}\Rightarrow dpcm\) 

NV
4 tháng 10 2021

\(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\ge1\Leftrightarrow\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)

\(\Leftrightarrow\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}\le1\)

\(\Rightarrow1\ge\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(a+b+c\right)}\)

\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow\) đpcm

8 tháng 8 2017

1.Ta có :\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^2-xy+y^2\) (do x+y=1)

\(=\dfrac{3}{4}\left(x-y\right)^2+\dfrac{1}{4}\left(x+y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)\(=\dfrac{1}{4}.1=\dfrac{1}{4}\)

Dấu "=" xảy ra khi :\(x=y=\dfrac{1}{2}\)

Vậy \(x^3+y^3\ge\dfrac{1}{4}\)

8 tháng 8 2017

2.

a) Sửa đề: \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì \(a,b\ge0\))

Đẳng thức xảy ra \(\Leftrightarrow a=b\)

b) Lần trước mk giải rồi nhá

3.

a) Áp dụng BĐT Cauchy-Schwarz dạng Engel\(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\dfrac{9}{3+3}=\dfrac{3}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{y+1}=\dfrac{1}{z+1}\\x+y+z=3\end{matrix}\right.\Leftrightarrow x=y=z=1\)

b) \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{x}{2\sqrt{x^2.1}}+\dfrac{y}{2\sqrt{y^2.1}}+\dfrac{z}{2\sqrt{z^2.1}}\)

\(=\dfrac{x}{2x}+\dfrac{y}{2y}+\dfrac{z}{2z}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)