K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC đồng dạng với ΔHBA

Suy ra:BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

b: Xét ΔHBD vuông tại H và ΔHCA vuông tại H có

góc HBD=góc HCA

Do đó: ΔHBD\(\sim\)ΔHCA
SUy ra: HB/HC=HD/HA

hay \(HB^2=HD\cdot HC\)

 

2 tháng 5 2023

a. Diện tích của Δ ABC là:

 \(\dfrac{1}{2}\) . 6 . 8 = 24 cm2

b. Ta có: Δ ABC vuông tại A

Theo đ/lí Py - ta - go

BC= AB2 + AC2

BC2 = 62 + 82

BC2 = 100

\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm

Vì AD là tia phân giác của \(\widehat{A}\) 

\(\dfrac{AB}{AC}=\dfrac{DB}{DC}\) 

 \(\Rightarrow\) \(\dfrac{6}{8}\) = \(\dfrac{DB}{10-DB}\) 

\(\Rightarrow\) \(\dfrac{3}{4}=\dfrac{DB}{10-DB}\) 

\(\Rightarrow\) 3 . (10 - DB) = 4DB

\(\Rightarrow\) 30 - 3DB - 4DB = 0

\(\Rightarrow\) 30 - 7DB = 0

\(\Rightarrow\)  DB = \(\dfrac{30}{7}\) \(\approx\) 4,3 cm

Ta có: DC = 10 - DB

 \(\Rightarrow\) DC = 10 - 4,3 

\(\Rightarrow\) DC = 5,7 cm

c. Xét ΔABC và ΔHBA:

     \(\widehat{A}=\widehat{H}\) = 900 (gt)

      \(\widehat{B}\) chung

\(\Rightarrow\) ΔABC \(\sim\) ΔHBA (g.g)

Ta có: ΔABC \(\sim\) ΔHBA 

\(\dfrac{AB}{HB}=\dfrac{BC}{BA}\) 

\(\Rightarrow\) AB2 = BH . BC

Vì ΔABC vuông tại A

SΔABC  = \(\dfrac{AH.BC}{2}\) \(\dfrac{AB.AC}{2}\) \(\Rightarrow\) AB . AC

\(\Leftrightarrow\) AH = \(\dfrac{AB.AC}{BC}\) = \(\Leftrightarrow\) \(\dfrac{1}{AH}\) = \(\dfrac{AH}{AB.AC}\) 

\(\Leftrightarrow\) \(\dfrac{1}{AB^2}\) = \(\dfrac{BC^2}{AB^2.AC^2}\) 

Mặt khác theo đ/lí Py - ta - go:

BC2 = AB2 + AC2

\(\Rightarrow\) \(\dfrac{1}{AH^2}\) = \(\dfrac{AB^2+AC^2}{AB^2.ÂC^2}\) = \(\dfrac{1}{AB^2}\) + \(\dfrac{1}{AC^2}\) 

\(\Rightarrow\) \(\dfrac{1}{AH^2}\) = \(\dfrac{1}{AB^2}\) + \(\dfrac{1}{AC^2}\) (dpcm)

nhớ tick cho cj nha

25 tháng 4 2017

Hình tự vẽ ha:)

a. Xét \(\Delta ABC\)\(\Delta HBA\) có:

\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\)

\(\widehat{B}\) chung

=> \(\Delta ABC\)~ \(\Delta HBA\) (g.g)

=> \(\dfrac{AB}{BH}=\dfrac{BC}{AB}\)

=> AB2= BH.BC

b. Theo đề, BD//AC

=> \(\dfrac{BH}{HC}=\dfrac{DH}{AH}\)

=> BH.AH=HC.DH

a) Xét ΔHBA và ΔABC có

\(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)

\(\widehat{ABH}\) chung

Do đó: ΔHBA∼ΔABC(g-g)

\(\frac{AB}{CB}=\frac{HB}{AB}\)

\(\Rightarrow AB^2=BH\cdot BC\)(đpcm)

b) Sửa đề: Chứng minh \(HA\cdot HB=HC\cdot HD\)

Xét ΔAHC và ΔDHB có

\(\widehat{AHC}=\widehat{DHB}\)(hai góc đối đỉnh)

\(\widehat{ACH}=\widehat{DBH}\)(hai góc so le trong, AC//DB)

Do đó: ΔAHC∼ΔDHB(g-g)

\(\frac{HA}{HD}=\frac{HC}{HB}\)

hay \(HA\cdot HB=HC\cdot HD\)(đpcm)

c) Ta có: ΔHBA∼ΔABC(cmt)

\(\widehat{HAB}=\widehat{ACB}\)(hai góc tương ứng)

hay \(\widehat{DAB}=\widehat{ACB}\)

Xét ΔDBA và ΔBAC có

\(\widehat{DBA}=\widehat{BAC}\left(=90^0\right)\)

\(\widehat{DAB}=\widehat{ACB}\)(cmt)

Do đó: ΔDBA∼ΔBAC(g-g)

\(\frac{DB}{AB}=\frac{BA}{AC}\)

hay \(AB^2=AC\cdot BD\)(đpcm)

16 tháng 6 2020

Thank you hihihiuhiuyeu

a: Xét ΔHBA vuông tạiH và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

b: Xét ΔHAC vuông tại H và ΔHDB vuông tại H có

góc HAC=góc HDB

=>ΔHAC đồng dạng vơi ΔHDB

=>HA/HD=HC/HB

=>HA*HB=HD*HC

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc HBA chung

Do đó:ΔHBA\(\sim\)ΔABC

b: ta có: ΔHBA\(\sim\)ΔABC

nên BH/BA=BA/BC

hay \(BA^2=BH\cdot BC\)

30 tháng 4 2022

thiếu phần c bạn giải giúp mik với

26 tháng 6 2020

c) Chứng minh M, H, N thẳng hàng.

Từ câu b ta có : HA. HB = HC. HD \(\rightarrow\frac{HA}{HC}=\frac{HD}{HB}\)

Xét \(\Delta AHC\)và \(\Delta DHB\)

có: \(\frac{HA}{HC}=\frac{HD}{HB}\)(cmt)

       \(\widehat{AHC}=\widehat{DHB}\)(đối đỉnh hay cùng = 90 độ)

\(\Rightarrow\Delta AHC\)đồng dạng với \(\Delta DHB\)

\(\Rightarrow\frac{AC}{BD}=\frac{HC}{HB}\)

mà \(\frac{AC}{BD}=\frac{\frac{1}{3}AC}{\frac{1}{3}BD}=\frac{NC}{BM}\)

\(\Rightarrow\frac{HC}{HB}=\frac{NC}{BM}\)

Kết hợp với \(\widehat{NCH}=\widehat{MBH}\)(SLT do AC//BD theo câu b)

\(\Rightarrow\Delta NCH\)đồng dạng với \(\Delta MBH\)

\(\Rightarrow\widehat{CHN}=\widehat{BHM}\)

mà \(\widehat{CHN}+\widehat{NHB}=180\)độ

\(\Rightarrow\widehat{BHM}+\widehat{NHB}=180\)độ

\(\Rightarrow\)M, H, N thẳng hàng.

9 tháng 4 2021

góc BHM đối đỉnh với góc HNC nên bằng nhau đc không ạ