A=\(\left(1-\dfrac{1}{1.2}\right)\left(1-\dfrac{1}{1.2.3}\right).........\left(1-\dfrac{1}{1.2.3....n}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}=\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)=\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}\)
P/s: Cj chỉ biết làm ý a thôi nhé! Có j ko hiểu cmt nhé!
\(2A=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{18.19.20}\)
\(\Rightarrow2A=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\)
\(\Rightarrow2A=\dfrac{1}{1.2}-\dfrac{1}{19.20}< \dfrac{1}{1.2}\)
\(\Rightarrow2A< \dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{1}{4}\) (đpcm)
câu b bài 2:
\(\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\)
\(=\dfrac{1}{5}\)
câu a bài 2:
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{10\cdot11\cdot12}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}-...-\dfrac{1}{12}\)
\(=1-\dfrac{1}{12}=\dfrac{11}{12}\)
\(S_n=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+....+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(S_n=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(S_n=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n+2\right)+1\left(n+2\right)}\right)\)
\(S_n=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n^2+2n+n+2}\right)\)
\(S_n=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n^2+3n+2}\right)\)
\(S_n=\dfrac{1}{4}-\dfrac{1}{2\left(n^2+3n+2\right)}\)
\(S_n=\dfrac{1}{4}-\dfrac{1}{2n^2+6n+4}\)
\(S_n=\dfrac{2n^2+6n+4}{4\left(2n^2+6n+4\right)}-\dfrac{4}{4\left(2n^2+6n+4\right)}\)
\(S_n=\dfrac{2n^2+6n+4}{8n^2+48n+16}-\dfrac{4}{8n^2+48n+16}\)
\(S_n=\dfrac{2n^2+6n}{8n^2+48n+16}\)
\(S_n=\dfrac{2\left(n^2+3n\right)}{2\left(4n^2+24n+8\right)}=\dfrac{n^2+3n}{4n^2+24n+8}\)
\(S_n=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\\ 2S_n=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\\ 2S_n=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\\ =\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\\ =\dfrac{\left(n+1\right)\left(n+2\right)-2}{2\left(n+1\right)\left(n+2\right)}\\ =>S_n=\dfrac{\left(n+1\right)\left(n+2\right)-2}{4\left(n+1\right)\left(n+2\right)}\)
Giải sai r nhéLinh Nguyễn
\(B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+......+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+....+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
Vậy..
\(B=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(B=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{n^2+3n+2-2}{4\left(n+1\right)\left(n+2\right)}=\dfrac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)
Ta có: \(\dfrac{1}{n.\left(n+1\right).\left(n+2\right)}=\dfrac{1}{2}.\left(\dfrac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\right)=\dfrac{1}{2}\left(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(\Rightarrow B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{n^2+3n}{4\left(n+1\right)\left(n+2\right)}\)