Cho đa thức f(x)=ax2+bx+c biết f(-2018)=5. Tính f(2018)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a + c = b + 2018
b = a + c - 2018
f(-1) = a . ( -1 )2 + b . ( -1 ) + c = a - b + c = a - ( a + c - 2018 ) + c = a - a - c + 2018 + c = 2018
Theo đề ta có : a + c = b + 2018
=> a + c -b = 2018
Ta có f(-1) = a.(-1)2 + b.(-1) + c = a - b + c = 2018
Theo đề bài f(0)= 2017 => c= 2017
f(1)= 2018 => a + b + c = 2018 => a + b = 1 (1)
f(-1)= 2019 => a - b + c= 2019 => a - b= 2 (2)
Cộng theo vế của (1) và (2), ta được
2a = 3 => a = 3/2
=>b= -1/2
Vậy a=3/2, b=-1/2, c= 2017. Khi đó f(2)= 6 - 2 + 2017= 2021
Vậy f(2)= 2021
Ta có :
a + c = b + 2018
a + c - b = 2018
f(-1) = a . ( -1 )2 + b . ( -1 ) + c
= a - b + c
= 2018
Vậy f(-1) = 2018
Ta có : a + c = b + 2018
b = a + c - 2018
f ( -1 ) = a . ( -1 ) 2 + b . ( -1 ) + c = a - b + c = a - ( a + c - 2018 ) + c = a - a - c + 2018 +c + 2018
\(\left\{{}\begin{matrix}f\left(0\right)=2017\\f\left(1\right)=2018\\f\left(-1\right)=2019\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}c=2017\\a+b+c=2018\\a-b+c=2019\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=1\\a-b=2\\c=2017\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{3}{2}\\b=-\frac{1}{2}\\c=2017\end{matrix}\right.\)
\(\Rightarrow f\left(2\right)=\frac{3}{2}\cdot2^2-\frac{1}{2}\cdot2+2017\)
\(\Rightarrow f\left(2\right)=6-1+2017=2022\)
Ta có :
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=a.1^2+b.1+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=a+b+c\\f\left(-1\right)=a-b+c\end{cases}}\)
mà \(f\left(1\right)=f\left(-1\right)\Rightarrow a+b+c=a-b+c\)
\(\Rightarrow b=-b\)
Đến bước này em không biết vì em học lớp 7
Từ \(b=-b\Rightarrow2b=0\Rightarrow b=0\)
\(\Rightarrow a+c=0\left(f\left(1\right)=0,b=0\right)\)
\(\Rightarrow a=-c\)
Thay \(b=0,a=-c\)vào biểu thức M ta được:
\(M=\left(-c\right)^{2019}+0^{2019}+c^{2019}+2018\)
\(=-c^{2019}+0+c^{2019}+2018\)
\(=\left(-c^{2019}+c^{2019}\right)+2018\)
\(=0+2018=2018\)
Vậy giá trị biểu thức M là \(2018\)
Lời giải:
$f(1)=a+b+c=6$
$f(2)=4a+2b+c=16$
$f(12)-f(-9)=(144a+12b+c)-(81a-9b+c)$
$=63a+21b=21(3a+b)$
$=21[(4a+2b+c)-(a+b+c)]=21(16-6)=21.10=210$