Cho hình chữ nhật ABCD, AB = 2AC. Trên cạnh AD lấy điểm M, trên cạnh BC lấy điểm P sao cho AM = CP. Kẻ BH vuông góc với AC tại H. Gọi Q là trung điểm của CH, đường thẳng kẻ qua P song song với MQ cắt AC tại N.
a) Chứng minh tứ giác MNPQ là hình bình hành
b) Khi M là trung điểm của AD. Chứng minh BQ vuông góc với NP
c) Đường thẳng AP cắt DC tại điểm F. Chứng minh rằng \(\dfrac{1}{AB^2}=\dfrac{1}{AP^2}+\dfrac{1}{4AF^2}\)