Cho hình bình hành ABCD (AC > BD). Gọi E, F lần lượt là hình chiếu của C lên các đường thẳng AB, AD. Chứng minh rằng:
a) AB.AE + AD.AF = AC2
b) \(\Delta FCE\sim\Delta ABC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét ΔAHD và ΔAFC có:
ˆAHD= ˆAFC=90 độ
ˆA chung
⇒ΔAHD và ΔAFC đồng dạng (g,g)
⇒AH/AF=AD/AC=AD/AC⇒AD.AF=AC.AH
b,
Từ B kẻ BK⊥AC
Chứng minh tương tự như trên ta có:
AB.AE=AK.AC
Mà AK=HC (tam giác ABK và tam giác CDH bằng nhau)
⇒AD.AF+AB.AE=AC.AH+AK.AC=AC(AH+AK)=AC(AH+HC)=AC.AC=AC^2
1) Có \(\widehat{ABC}=\widehat{ADC}\)
\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ADC}\) \(\Leftrightarrow\widehat{EBC}=\widehat{CDF}\)
Xét \(\Delta BCE\) và \(\Delta DCF\) có:
\(\Leftrightarrow\widehat{EBC}=\widehat{CDF}\)
\(\widehat{E}=\widehat{F}=90^0\)
nên \(\Delta BCE\sim\Delta DCF\left(g.g\right)\) \(\Rightarrow\dfrac{CE}{CF}=\dfrac{CB}{CD}\) \(\Leftrightarrow CE.CD=CF.CB\)
Có \(\widehat{EAF}+\widehat{ECF}=360^0-\widehat{AEC}-\widehat{AFC}=360^0-90^0-90^0=180^0\)
mà \(\widehat{BAD}+\widehat{ABC}=180^0\) (hai góc so le trong do BC//AD)
\(\Rightarrow\widehat{ECF}=\widehat{ABC}\) (1)
mà \(CE.CD=CB.CF\) (cm trên)\(\Leftrightarrow CE.AB=CB.CF\) \(\Leftrightarrow\dfrac{CE}{CB}=\dfrac{CF}{AB}\) (2)
Từ (1);(2) \(\Rightarrow\Delta ABC\sim\Delta FCE\left(c.g.c\right)\)
2. Kẻ \(DK\perp AC\) tại K
Dễ chững minh được \(\Delta ADK\sim ACF\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AK}{AF}\Leftrightarrow AD.AF=AC.AK\) (*)
Dễ chứng minh được \(\Delta CDK\sim\Delta ACE\left(g.g\right)\)
\(\Rightarrow\dfrac{CK}{AE}=\dfrac{CD}{AC}\Leftrightarrow CK.AC=AE.CD\) mà DC=AB
\(\Rightarrow AB.AE=CK.AC\) (3*)
Từ (*);(2*) cộng vế với vế \(\Rightarrow AB.AE+AD.AF=AC.CK+AC.AK=AC\left(CK+AK\right)\)
\(\Rightarrow AB.AE+AD.AF=AC^2\)
Vậy...
Dựng BG ⊥ AC.
Xét ΔBGA và ΔCEA, ta có:
∠ (BGA) = ∠ (CEA) = 90 0
∠ A chung
⇒ △ BGA đồng dạng △ CEA(g.g)
Suy ra:
AB.AE = AC.AG (1)
Xét △ BGC và △ CFA, ta có:
∠ (BGC) = ∠ (CFA) = 90 0
∠ (BCG) = ∠ (CAF) (so le trong vì AD //BC)
△ BGC đồng dạng △ CFA (g.g)
Suy ra: ⇒ BC.AF = AC.CG
Mà BC = AD (tính chất hình bình hành)
Suy ra: AD.AF = AC.CG (2)
Cộng từng vế đẳng thức (1) và (2) ta có:
AB.AE + AD.AF = AC.AG + AC.CG
AB.AE + AD.AF= AC(AG + CG)
Mà AG + CG = AC nên AB.AE + AD.AF = A C 2