K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2015

tớ viết lộn chỗ kia \(\left(\sqrt{2}.a.\frac{1}{\sqrt{2}}+b.1\right)^2\) thêm b.1 vô nka triều :D

20 tháng 10 2015

Cậu ta lúc nào cũng câu hỏi tương tự

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

22 tháng 2 2017

ĐỀ sai nhé: \(a^2+b^2=4\Rightarrow4-a^2< 0\)

Vậy làm sao tồn tại căn của nó chứ

22 tháng 2 2017

ủa ,4-a^2=b^2 mà bạn

16 tháng 7 2019

a.\(\Rightarrow a^2+3>2\sqrt{a^2+2}\)

\(\Leftrightarrow a^4+9+6a^2>4a^2+8\)

\(\Leftrightarrow\left(a^2+1\right)^2>0\left(LĐ\right)\)

b.Áp dụng BĐT Svarxo:

\(VP\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{b}+\sqrt{a}}=\sqrt{a}+\sqrt{b}=VT\)

16 tháng 7 2019

Thanks Nguyen lần nữa :)))

10 tháng 8 2017

hi kết bạn nha

NV
5 tháng 10 2019

Với a; b dương chứ nhỉ, nằm dưới mẫu thêm điều kiện khác 0, mà không âm + khác 0 thì nó là dương còn gì?

\(\Leftrightarrow\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\le\sqrt[3]{2\left(\frac{a}{b}+\frac{b}{a}+2\right)}\)

\(\Leftrightarrow\left(\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\right)^3\le2\left(\frac{a}{b}+\frac{b}{a}+2\right)\)

Đặt \(\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}=x\ge2\) BĐT tương đương:

\(x^3\le2\left(x^3-3x+2\right)\)

\(\Leftrightarrow x^3-6x+4\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x-2\right)\ge0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2+x+x-2\right]\ge0\) (luôn đúng)

Vậy BĐT được chứng minh, dấu "=" xảy ra khi \(x=2\Leftrightarrow a=b\)

6 tháng 10 2019

Haha, dạng này chơi "lầy" kiểu "lập phương hai vế" luôn á:)))