Chứng minh \(S=1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+n}< 2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2^2+1/3^2+...+1/50^2<1/1*2+1/2*3*+...+1/49*50
=1/1-1/2+1/2-1/3+...+1/49-1/50<1
=>S<1+1=2
S = 1/3 + 1/3² + 1/3³ + ... + 1/3²⁰²¹ + 1/3²⁰²²
⇒ S/3 = 1/3² + 1/3³ + 1/3⁴ + ... + 1/3²⁰²² + 1/3²⁰²³
⇒ 2S/3 = S - S/3
= (1/3 + 1/3² + 1/3³ + ... + 1/3²⁰²¹ + 1/3²⁰²²) - (1/3² +1/3³ + 1/3⁴ + ... + 1/3²⁰²² + 1/3²⁰²³)
= 1/3 - 1/3²⁰²³
⇒ S = (1/3 - 1/3²⁰²³) : 2/3
= (1 - 1/3²⁰²²) : 2
Lại có: 1 - 1/3²⁰²² < 1
⇒ S < 1/2
Ta có:
1/2^2 > 1/2.3
1/3^2 > 1/3.4
...
1/10^2 > 1/10.11
-> Cộng dọc theo vế ta có:
1/2^2+1/3^2+...+1/10^2 > 1/2.3+1/3.4+...+1/10.11
= 1/2-1/3+1/3-1/4+...+1/10-1/11
= 1/2 - 1/11 = 9/22 (đpcm)
a)Ta có:\(\dfrac{1}{b}-\dfrac{1}{b+1}=\dfrac{b+1-b}{b\left(b+1\right)}=\dfrac{1}{b^2+b}< \dfrac{1}{b^2}\)(do b>1)
\(\dfrac{1}{b-1}-\dfrac{1}{b}=\dfrac{b-b+1}{\left(b-1\right)b}=\dfrac{1}{b^2-b}>\dfrac{1}{b^2}\)(do b>1)
b)Áp dụng từ câu a
=>\(\dfrac{1}{2}-\dfrac{1}{3}< \dfrac{1}{2^2}< \dfrac{1}{1}-\dfrac{1}{2}\)
\(\dfrac{1}{3}-\dfrac{1}{4}< \dfrac{1}{3^2}< \dfrac{1}{2}-\dfrac{1}{3}\)
.........................
\(\dfrac{1}{9}-\dfrac{1}{10}< \dfrac{1}{9^2}< \dfrac{1}{8}-\dfrac{1}{9}\)
=>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}< S< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
=>\(\dfrac{1}{2}-\dfrac{1}{10}< S< 1-\dfrac{1}{9}\)
=>\(\dfrac{2}{5}< S< \dfrac{8}{9}\)(đpcm)
\(1^2+2^2+...+n^2=1+2\left(1+1\right)+...+n\left(n-1+1\right)=1+2+1.2+3+2.3+...+n+\left(n-1\right)n\)
\(=\left(1+2+3+...+n\right)+\left[1.2+2.3+...+\left(n-1\right)n\right]=\dfrac{\left(n+1\right)\left(\dfrac{n-1}{1}+1\right)}{2}+\dfrac{1.2.3+2.3.3+...+\left(n-1\right)n.3}{3}=\dfrac{n\left(n+1\right)}{2}+\dfrac{1.2.3+2.3.\left(4-1\right)+...+\left(n-1\right)n\left[\left(n+1\right)-\left(n-2\right)\right]}{3}\)
\(=\dfrac{n\left(n+1\right)}{2}+\dfrac{1.2.3-1.2.3+2.3.4-...-\left(n-2\right)\left(n-1\right)n+\left(n-1\right)n\left(n+1\right)}{3}\)
\(=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n-1\right)n\left(n+1\right)}{3}=\dfrac{3n\left(n+1\right)+2\left(n-1\right)n\left(n+1\right)}{6}=\dfrac{2n^3+3n^2+n}{6}=\dfrac{1}{3}n^3+\dfrac{1}{2}n^2+\dfrac{1}{6}n=\dfrac{1}{3}n\left(n^2+\dfrac{3}{2}n+\dfrac{1}{2}\right)=\dfrac{1}{3}n\left(n+\dfrac{1}{2}\right)\left(n+1\right)\)
1.
Ta có:
Vì b+1-b=1=>\(\dfrac{1}{b}-\dfrac{1}{b+1}=\dfrac{1}{b.\left(b+1\right)}\)<\(\dfrac{1}{b.b}\)(1)
Vì b-(b-1)=1=>\(\dfrac{1}{b-1}-\dfrac{1}{b}=\dfrac{1}{b.\left(b-1\right)}\)>\(\dfrac{1}{b.b}\)(2)
Từ (1) và (2)=>\(\dfrac{1}{b}-\dfrac{1}{b+1}< \dfrac{1}{b.b}< \dfrac{1}{b-1}-\dfrac{1}{b}\)
Câu 2 bạn hỏi bạn Bùi Ngọc Minh nhé PR cho nó
Bài 2:
Ta có:S=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{9^2}=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}\)
S>\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\left(1\right)\)
S<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}=1-\dfrac{1}{9}=\dfrac{8}{9}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{2}{5}< S< \dfrac{8}{9}\)
*chứng minh:
\(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+n}< 1\)
Xét thừa số tổng quát:
\(\dfrac{1}{1+2+3+...+n}=\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}=\dfrac{2}{n\left(n+1\right)}\)
\(\Rightarrow\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+n}\)
\(=\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{n\left(n+1\right)}=2\left(\dfrac{1}{2}-\dfrac{1}{n+1}\right)=1-\dfrac{1}{2\left(n+1\right)}< 1\)
Điều phải chứng minh ~
p/s: xem lại,tối t hay ngáo lắm,nghĩ thế này gõ thế khác đó ^^
Èo