Cho \(\Delta\)ABC và điểm O nằm trong \(\Delta\)đó . Sao cho OA>OC
Chứng minh rằng : OA-OC <AB+BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác MON có: \(\frac{{OA}}{{OM}} = \frac{{OB}}{{ON}} = \frac{2}{3}\) nên \(AB//MN\) (Định lý Thales đảo)
\( \Rightarrow \frac{{AB}}{{MN}} = \frac{2}{3}\) (Hệ quả của định lý Thales)
Chứng minh tương tự ta được \(\frac{{BC}}{{NP}} = \frac{2}{3};\,\,\frac{{AC}}{{MP}} = \frac{2}{3}\)
\( \Rightarrow \frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{AC}}{{MP}}\)
\( \Rightarrow \Delta ABC \backsim\Delta MNP\) (c-c-c)
Hình, tự vẽ:
Kéo dài OA cắt BD tại một điểm. Gọi điểm đó là T. (:P)
Ta có: BC = BT + TC;
Xét tam giác: ABT có: AT < AB +BT;
=> OA + OT < AB + BT
Xét tam giác OCT có: OC < OT + CT
Ta có:
\(\left\{{}\begin{matrix}OA+OT< AB+BT\\OC< OT+CT\end{matrix}\right.\)
=> OA + OT +OC < AB + OT + BT + CT
=> OA + OT + OC < AB + OT + BD
=> OA + OC < AB + BD
a) Xét \(\Delta AOB\) và \(\Delta COD\), có:
AO = CO (gt)
\(\widehat{AOB}=\widehat{COD}\) ( đối đỉnh)
OB = OD (gt)
\(\Rightarrow \Delta AOB = \Delta COD\) ( c.g.c)
Xét \(\Delta AOD\) và \(\Delta COB\), có:
AO = CO (gt)
\(\widehat{AOD}=\widehat{COB}\) ( đối đỉnh)
OD = OB (gt)
\(\Rightarrow \Delta AOD = \Delta COB\) ( c.g.c)
Vậy hai cặp tam giác có chung đỉnh O bằng nhau là: AOB và COD; AOD và COB theo trường hợp cạnh – góc – cạnh.
b)
Do \(\Delta AOD = \Delta COB\) nên: \(\widehat {ADO} = \widehat {CBO}\) (2 góc tương ứng) và AD=BC (2 cạnh tương ứng)
Xét \(\Delta DAB\) và \(\Delta BCD\), có:
AD=BC (cmt)
\(\widehat {ADO} = \widehat {CBO}\) (cmt)
BD chung
Vậy \(\Delta DAB =\Delta BCD\) (c.g.c)
Bài 2:
a: Xét ΔOAD và ΔOCB có
OA/OC=OD/OB
góc O chung
Do đó: ΔOAD\(\sim\)ΔOCB
b:
Ta có: \(\widehat{IAB}+\widehat{OAD}=180^0\)
\(\widehat{ICD}+\widehat{OCB}=180^0\)
mà \(\widehat{OAD}=\widehat{OCB}\)
nên \(\widehat{IAB}=\widehat{ICD}\)
mà \(\widehat{AIB}=\widehat{CID}\)
nên \(\widehat{IBA}=\widehat{IDC}\)
(Tự vẽ hình)
a, Xét \(\Delta OAC\) và \(\Delta OBC\)
có: \(OA=OB\)
\(\widehat{AOC}=\stackrel\frown{COB}\)
OC cạnh chung
\(=>\Delta OAC=\Delta OBC\left(c.g.c\right)\)
b, Ta có: \(\Delta OAC=\Delta OBC\left(cmt\right)\)
Nên: \(\widehat{OAC}=\stackrel\frown{OBC}\)(cặp góc tương ứng)
Xét \(\Delta OAD\) và \(\Delta OBE\)
có: \(\widehat{O}\) chung
OA=OB
\(\widehat{OAC}=\widehat{OBC}\)
\(=>\Delta OAD=\Delta OBE\left(g.c.g\right)\)
c, Gọi F là giao điểm của OC và AB
Xét \(\Delta OAF\) và \(\Delta OBF\)
có: OA=OB
\(\widehat{AOF}=\widehat{FOB}\)
OC cạnh chung
Do đó: \(\Delta OAF=\Delta OBF\left(c.g.c\right)\)
\(=>\widehat{OFA}=\widehat{OFB}\) (cặp góc tương ứng)
Mà: \(\widehat{OFA}+\widehat{OFB}=180^0\) (kề bù)
Vậy: \(\widehat{OFA}=\widehat{OFB}=90^0\)
~> \(OC\perp AB\)