K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

bạn chỉ cần gọi x\(^2\)=t(t\(\ge\)0)

ta có p/trình mới có dạng: a.t\(^2\)+b.t+c=0

giải phương trình bậc hai theo cách tính \(\Delta\)=b\(^2\)-4.a.c và xét dấu\(\Delta\)

Nếu delta nhỏ hơn 0 => pt vô nghiệm => ko tìm đc t=> ko tìm đc x

Nếu delta bằng 0 => pt có nghiệm kép t\(_1\)=t\(_2\)=\(\dfrac{-b}{2a}\)(xét điều kiện của t)=> thay t=\(\dfrac{-b}{2a}\)vào x\(^2\)=t ta tính đc: x=\(\sqrt{\dfrac{-b}{2a}}\)

Nếu delta lớn hơn 0 => pt có 2 nghiệm phân biệt t\(_1\)= \(\dfrac{-b+\sqrt{\Delta}}{2a}\)

t\(_2\)=\(\dfrac{-b-\sqrt{\Delta}}{2a}\)

thay từng TH của t vào x\(^2\)=t tìm x và kết luận.

Chúc bạn hoc tốt!


18 tháng 4 2019

a)  4 x 4 + x 2 − 5 = 0

Đặt  x 2 = t (t ≥ 0). Phương trình trở thành:

4 t 2 + t − 5 = 0

Nhận thấy phương trình có dạng a + b + c = 0 nên phương trình có nghiệm

t 1 = 1 ; t 2 = ( − 5 ) / 4

Do t ≥ 0 nên t = 1 thỏa mãn điều kiện

Với t = 1, ta có:  x 2 = 1 ⇔ x = ± 1

Vậy phương trình có 2 nghiệm  x 1 = 1 ; x 2 = − 1

b)  3 x 4 + 4 x 2 + 1 = 0

Đặt x 2 = t ( t ≥ 0 ) . Phương trình trở thành:

3 t 2 + 4 t + 1 = 0

Nhận thấy phương trình có dạng a - b + c = 0 nên phương trình có nghiệm

t 1 = - 1 ; t 2 = ( - 1 ) / 3

Cả 2 nghiệm của phương trình đều không thỏa mãn điều kiện t ≥ 0

Vậy phương trình đã cho vô nghiệm.

7 tháng 11 2019

3x4 + 4x2 + 1 = 0

Đặt x2 = t (t ≥ 0). Phương trình trở thành:

3t2 + 4t + 1 = 0

Nhận thấy phương trình có dạng a - b + c = 0 nên phương trình có nghiệm

t1 = -1; t2 = (-1)/3

Cả 2 nghiệm của phương trình đều không thỏa mãn điều kiện t ≥ 0

Vậy phương trình đã cho vô nghiệm.

14 tháng 9 2019

4x4 + x2 – 5 = 0;

Đặt x2 = t (t ≥ 0). Phương trình trở thành:

4t2 + t - 5 = 0

Nhận thấy phương trình có dạng a + b + c = 0 nên phương trình có nghiệm

t1 = 1; t2 =(-5)/4

Do t ≥ 0 nên t = 1 thỏa mãn điều kiện

Với t = 1, ta có: x2 = 1 ⇔ x = ±1

Vậy phương trình có 2 nghiệm x1 = 1; x2 = -1

14 tháng 8 2019

28 tháng 1 2019

25 tháng 2 2017

3x4 + 10x2 + 3 = 0 (1)

Đặt x2 = t, điều kiện t ≥ 0.

Khi đó (1) trở thành : 3t2 + 10t + 3 = 0 (2)

Giải (2) : Có a = 3; b' = 5; c = 3

⇒ Δ’ = 52 – 3.3 = 16 > 0

⇒ Phương trình có hai nghiệm phân biệt

Giải bài 34 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai giá trị đều không thỏa mãn điều kiện.

Vậy phương trình (1) vô nghiệm.

13 tháng 10 2017

23 tháng 4 2018

26 tháng 2 2019

Đáp án cần chọn là: B

 

23 tháng 7 2019

a)  x 4   –   5 x 2   +   4   =   0   ( 1 )

Đặt x 2   =   t, điều kiện t ≥ 0.

Khi đó (1) trở thành :  t 2   –   5 t   +   4   =   0   ( 2 )

Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0

⇒ Phương trình có hai nghiệm  t 1   =   1 ;   t 2   =   c / a   =   4

Cả hai giá trị đều thỏa mãn điều kiện.

+ Với t = 1 ⇒ x 2   =   1  ⇒ x = 1 hoặc x = -1;

+ Với t = 4 ⇒ x 2   =   4  ⇒ x = 2 hoặc x = -2.

Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.

b)  2 x 4   –   3 x 2   –   2   =   0 ;   ( 1 )

Đặt   x 2   =   t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  2 t 2   –   3 t   –   2   =   0   ( 2 )

Giải (2) : Có a = 2 ; b = -3 ; c = -2

⇒   Δ   =   ( - 3 ) 2   -   4 . 2 . ( - 2 )   =   25   >   0

⇒ Phương trình có hai nghiệm

Giải bài 34 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Chỉ có giá trị t 1   =   2  thỏa mãn điều kiện.

+ Với t = 2 ⇒ x 2   =   2  ⇒ x = √2 hoặc x = -√2;

Vậy phương trình (1) có tập nghiệm S = {-√2 ; √2}.

c)  3 x 4   +   10 x 2   +   3   =   0   ( 1 )

Đặt x 2   =   t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  3 t 2   +   10 t   +   3   =   0   ( 2 )

Giải (2) : Có a = 3; b' = 5; c = 3

⇒  Δ ’   =   5 2   –   3 . 3   =   16   >   0

⇒ Phương trình có hai nghiệm phân biệt

Giải bài 34 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai giá trị đều không thỏa mãn điều kiện.

Vậy phương trình (1) vô nghiệm.