chứng minh rằng ba số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có:
45 + 99 + 180 = 324
Vì: Số tận cùng của nó là số 4
=> 324 chia hết cho 2
Bài 1
chỉ cần tính ra kết quả là đc
Bài 2
Giả sử một số tự nhiên bất kì = n
=> 2 số tự nhiên liên tiếp là n và n+1
- Với n = 2k+1=>n+1 = 2k+2 chia hết 2
- Với n = 2k => n chia hết 2
Vậy trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết 2
Theo anh cách giải thế này:
3 số tự nhiên liên tiếp luôn luôn có dạng:
k+1,k+2,k+3
Từ đây ta có:
+Nếu k chia hết cho 3 thì k+3 chia hết cho 3
+Nếu k chia 3 dư 1 thì k+2 chia hết cho 3
+Nếu k chia 3 dư 2 thì k+1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp luôn tồn tại 1 số chia hết cho 3
Chúc em học tốt^^
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.
=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.
3a chia hết cho 3,3 cũng chia hết cho 3
=> tổng này luôn luôn chia hết cho 3.
Gọi 3 số tự nhiên liên tiếp đó là a,a+1,a+2.
Ta có:(a+a+1+a+2)=3a+3
Mà 3a chia hết cho 3
3 chia hết cho 3
Suy ra 3a+3 chia hết cho 3
vì 3 số có trung bình cộng chia được cho 3 nên phải chia được cho 3
Chứng minh rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3
Đặt 3 số tự nhiên liên tiếp là: n, n+1, n+2
Giả sử n⋮ 3 thì thỏa mãn đề bài
Giả sử n chia 3 dư 1 thì n=3k+1 ⇒ n+2=3k+3⋮ 3 ⇒ thỏa mãn đề bài
Giả sử n chia 3 dư 2 thì n=3k+2 ⇒ n+1=3k+3⋮ 3 ⇒ thỏa mãn đề bài
Vậy trong 3 số tự nhiên liên tiếp thì luô có 1 số chi hết cho 3
ta có : tông 3 số tự nhiên liên tiếp là :
a+a+1+a+2= 3a+3
vì 3 chia hết cho (chc) 3 mà một số tự nhiên nhân với bất kì số nào cũng chia hết cho chính no
=> 3a chc 3
=> 3a+3 chc 3
Vậy 3 số tự nhiên liên tiếp luôn chc 3
Gọi 3 số tự nhiên liên tiếp lần lượt là n ; n+1 ; n+2
Nếu n chia hết cho 3 thì bài toán luôn đúng
Nếu n : 3 dư 1 thì n = 3k + 1 ( k ∈ N)
⇒ n +2 = 3k + 1 +2 = 3k + 3 chia hết cho 3
Nếu n : 3 dư 2 thì n = 3k + 2
⇒ n + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3
⇒ Trong 3 số tự nhiên liên tiếp có một số chia hết cho 3.
Trả lời: chứng minh rằng ba số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Gọi 3 số liên tiếp lần lượt là a,b,c (a<b<c)
Có 3 trường hợp sau:
TH1: a mod 3=0 -> a là số chia hết cho 3 trong 3 số
TH 2: a mod 3 =1
-> b mod 3= 2
và c mod 3 =0 -> c chia hết cho 3
TH3: a mod 3=2
-> b mod 3=0
-> b chia hết cho 3
Kết luận: 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3.