K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

Nhiều nick nhỉ! :)

28 tháng 3 2018

ai giúp cho 10 like

AH
Akai Haruma
Giáo viên
21 tháng 7 2018

Lời giải:

Thực hiện khai triển và rút gọn thu được:

\(B=\frac{x^3}{2}-\frac{1}{2}x^4+\frac{1}{2}x^2+\frac{1}{2}x^4-x^2\)

\(=\frac{x^3}{2}-\frac{x^2}{2}\)

a) Từ biểu thức rút gọn trên suy ra bậc của B(x) là $3$

b) \(B(\frac{1}{2})=\frac{\frac{1}{2^3}}{2}-\frac{(\frac{1}{2})^2}{2}=-\frac{1}{16}\)

c) \(B=\frac{x^3}{2}-\frac{x^2}{2}=\frac{x^2(x-1)}{2}=\frac{x.x(x-1)}{2}\)

\(x(x-1)\) là tích 2 số nguyên liên tiếp nên \(x(x-1)\vdots 2\)

\(\Rightarrow \frac{x(x-1)}{2}\in\mathbb{Z}\)

\(\Rightarrow B=x.\frac{x(x-1)}{2}\in\mathbb{Z}\)

Ta có đpcm.

6 tháng 4 2018

a) \(x^2y^2-x^2+\left(\dfrac{1}{2}\right)^6x=x^2y^2-x^2+\dfrac{1}{64}x\)

\(\Rightarrow\) đa thức bậc 4

b) \(\left(-9x^2\right)\dfrac{1}{3}y+y\left(-x^2\right)+24x\left(\dfrac{-1}{4}xy\right)\)

\(=-3x^2y-x^2y-6x^2y\)

\(=-10x^2y\)

Thay \(x=1;y=-1\) vào đa thức ta có:

\(-10x^2y=-10.1^2.\left(-1\right)=10\)

P(x)=-5x^3-1/3+8x^4+x^2

Q(x)=x^4-2x^3+x^2-5x-2/3

P(x)+Q(x)

=x^4-2x^3+x^2-5x-2/3+8x^4-5x^3+x^2-1/3

=9x^4-7x^3+2x^2-5x-1

P(x)-Q(x)

=x^4-2x^3+x^2-5x-2/3-8x^4+5x^3-x^2+1/3

=-7x^4+3x^3-5x-1/3

a: \(P\left(-1\right)=3-1+\dfrac{7}{4}=\dfrac{7}{4}+2=\dfrac{15}{4}\)

\(Q\left(\dfrac{1}{2}\right)=-3\cdot\dfrac{1}{4}+2\cdot\dfrac{1}{2}+2=-\dfrac{3}{4}+3=\dfrac{9}{4}\)

b: Đặt P(x)-Q(x)=0

\(\Leftrightarrow3x^2+x+\dfrac{7}{4}=-3x^2+2x+2\)

\(\Leftrightarrow6x^2-x-\dfrac{1}{4}=0\)

\(\Leftrightarrow24x^2-4x-1=0\)

\(\text{Δ}=\left(-4\right)^2-4\cdot24\cdot\left(-1\right)=112>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{4-4\sqrt{7}}{48}=\dfrac{1-\sqrt{7}}{12}\\x_2=\dfrac{1+\sqrt{7}}{12}\end{matrix}\right.\)

18 tháng 5 2017

a) \(\dfrac{\left(x+2\right)P}{x-2}=\dfrac{\left(x-1\right)Q}{x^2-4}\)

\(\Leftrightarrow\left(x^2-4\right)\left(x+2\right)P=\left(x-2\right)\left(x-1\right)Q\)

\(\Leftrightarrow\)\(\left(x+2\right)^2\left(x-2\right)P=\left(x-2\right)\left(x-1\right)Q\)

\(\Leftrightarrow\)\(\left(x+2\right)^2P=\left(x-1\right)Q\)

\(\Leftrightarrow P=x-1\)

\(Q=\left(x+2\right)^2=x^2+4x+4\)

b)\(\dfrac{\left(x+2\right)P}{x^2-1}=\dfrac{\left(x-2\right)Q}{x^2-2x+1}\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)P=\left(x+1\right)\left(x-1\right)\left(x-2\right)Q\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)P=\left(x+1\right)\left(x-2\right)Q\)

\(\Leftrightarrow P=\left(x+1\right)\left(x-2\right)=x^2-x-2\)

\(Q=\left(x-1\right)\left(x+2\right)=x^2+x-2\)

a: \(=6x^4-9x^3+3x^2-4x^3+6x^2-2x+10x^2-15x+5\)

\(=6x^4-13x^3+19x^2-17x+5\)

b: \(=6x^4-\dfrac{9}{4}x^3-\dfrac{9}{2}x^2-\dfrac{8}{3}x^3+x^2+2x-\dfrac{20}{3}x^2+\dfrac{5}{2}x+5\)

\(=6x^4-\dfrac{59}{12}x^3-\dfrac{67}{6}x^2+\dfrac{9}{2}x+5\)

c: \(=3x^4-\dfrac{9}{8}x^3-\dfrac{3}{4}x^2+8x^3-3x^2-6x-\dfrac{4}{3}x^2+\dfrac{1}{2}x+1\)

\(=3x^4-\dfrac{55}{8}x^3-\dfrac{25}{12}x^2-\dfrac{11}{2}x+1\)

`@` `\text {Ans}`

`\downarrow`

`P(x)+Q(x)-R(x)`

`= 5x^2 + 5x - 4 +2x^2 - 3x + 1 - (4x^2 - x + 3)`

`= 5x^2 + 5x - 4 + 2x^2 - 3x + 1 - 4x^2 + x - 3`

`= (5x^2 + 2x^2 - 4x^2) + (5x - 3x + x) + (-4 + 1 - 3)`

`= 3x^2 + 3x - 6`

Thay `x=-1/2`

`3*(-1/2)^2 + 3*(-1/2) - 6`

`= 3*1/4 - 3/2 - 6`

`= 3/4 - 3/2 - 6`

`= -3/4 - 6 = -27/4`

Vậy, khi `x=-1/2` thì GTr của đa thức là `-27/4`

P(x)+Q(x)-R(x)

=5x^2+5x-4+2x^2-3x+1-4x^2+x-3

=2x^2+3x-6(1)

Khi x=-1/2 thì (1) sẽ là 2*1/4+3*(-1/2)-6=1/2-3/2-6=-7

19 tháng 12 2023

  loading...  

loading...  loading...  

a: \(P\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}\)

\(Q\left(x\right)=4x^4+2x^3-5x^2-6x+\dfrac{3}{2}\)

b: \(A\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}+4x^4+2x^3-5x^2-6x+\dfrac{3}{2}=-x^4+2x^3-3x^2-14x+2\)

\(B\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}-4x^4-2x^3+5x^2+6x-\dfrac{3}{2}=-9x^4-2x^3+7x^2-2x-1\)

8 tháng 4 2022

a)\(Q\left(x\right)=2x^3+4x^4-6x-5x^2+\dfrac{3}{2}\)

\(P\left(x\right)=2x^2-5x^4-8x+\dfrac{1}{2}\)