cho đa thức \(Q\left(x\right)=x\left(\dfrac{x^2}{2}-\dfrac{1}{2}x^3+\dfrac{1}{2}x\right)-\left(-\dfrac{1}{2}x^4+x^2\right)\)
tìm bậc của đa thức Q(x)
tính Q(-1/2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Thực hiện khai triển và rút gọn thu được:
\(B=\frac{x^3}{2}-\frac{1}{2}x^4+\frac{1}{2}x^2+\frac{1}{2}x^4-x^2\)
\(=\frac{x^3}{2}-\frac{x^2}{2}\)
a) Từ biểu thức rút gọn trên suy ra bậc của B(x) là $3$
b) \(B(\frac{1}{2})=\frac{\frac{1}{2^3}}{2}-\frac{(\frac{1}{2})^2}{2}=-\frac{1}{16}\)
c) \(B=\frac{x^3}{2}-\frac{x^2}{2}=\frac{x^2(x-1)}{2}=\frac{x.x(x-1)}{2}\)
Vì \(x(x-1)\) là tích 2 số nguyên liên tiếp nên \(x(x-1)\vdots 2\)
\(\Rightarrow \frac{x(x-1)}{2}\in\mathbb{Z}\)
\(\Rightarrow B=x.\frac{x(x-1)}{2}\in\mathbb{Z}\)
Ta có đpcm.
a) \(x^2y^2-x^2+\left(\dfrac{1}{2}\right)^6x=x^2y^2-x^2+\dfrac{1}{64}x\)
\(\Rightarrow\) đa thức bậc 4
b) \(\left(-9x^2\right)\dfrac{1}{3}y+y\left(-x^2\right)+24x\left(\dfrac{-1}{4}xy\right)\)
\(=-3x^2y-x^2y-6x^2y\)
\(=-10x^2y\)
Thay \(x=1;y=-1\) vào đa thức ta có:
\(-10x^2y=-10.1^2.\left(-1\right)=10\)
P(x)=-5x^3-1/3+8x^4+x^2
Q(x)=x^4-2x^3+x^2-5x-2/3
P(x)+Q(x)
=x^4-2x^3+x^2-5x-2/3+8x^4-5x^3+x^2-1/3
=9x^4-7x^3+2x^2-5x-1
P(x)-Q(x)
=x^4-2x^3+x^2-5x-2/3-8x^4+5x^3-x^2+1/3
=-7x^4+3x^3-5x-1/3
a: \(P\left(-1\right)=3-1+\dfrac{7}{4}=\dfrac{7}{4}+2=\dfrac{15}{4}\)
\(Q\left(\dfrac{1}{2}\right)=-3\cdot\dfrac{1}{4}+2\cdot\dfrac{1}{2}+2=-\dfrac{3}{4}+3=\dfrac{9}{4}\)
b: Đặt P(x)-Q(x)=0
\(\Leftrightarrow3x^2+x+\dfrac{7}{4}=-3x^2+2x+2\)
\(\Leftrightarrow6x^2-x-\dfrac{1}{4}=0\)
\(\Leftrightarrow24x^2-4x-1=0\)
\(\text{Δ}=\left(-4\right)^2-4\cdot24\cdot\left(-1\right)=112>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{4-4\sqrt{7}}{48}=\dfrac{1-\sqrt{7}}{12}\\x_2=\dfrac{1+\sqrt{7}}{12}\end{matrix}\right.\)
a) \(\dfrac{\left(x+2\right)P}{x-2}=\dfrac{\left(x-1\right)Q}{x^2-4}\)
\(\Leftrightarrow\left(x^2-4\right)\left(x+2\right)P=\left(x-2\right)\left(x-1\right)Q\)
\(\Leftrightarrow\)\(\left(x+2\right)^2\left(x-2\right)P=\left(x-2\right)\left(x-1\right)Q\)
\(\Leftrightarrow\)\(\left(x+2\right)^2P=\left(x-1\right)Q\)
\(\Leftrightarrow P=x-1\)
\(Q=\left(x+2\right)^2=x^2+4x+4\)
b)\(\dfrac{\left(x+2\right)P}{x^2-1}=\dfrac{\left(x-2\right)Q}{x^2-2x+1}\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)P=\left(x+1\right)\left(x-1\right)\left(x-2\right)Q\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)P=\left(x+1\right)\left(x-2\right)Q\)
\(\Leftrightarrow P=\left(x+1\right)\left(x-2\right)=x^2-x-2\)
\(Q=\left(x-1\right)\left(x+2\right)=x^2+x-2\)
a: \(=6x^4-9x^3+3x^2-4x^3+6x^2-2x+10x^2-15x+5\)
\(=6x^4-13x^3+19x^2-17x+5\)
b: \(=6x^4-\dfrac{9}{4}x^3-\dfrac{9}{2}x^2-\dfrac{8}{3}x^3+x^2+2x-\dfrac{20}{3}x^2+\dfrac{5}{2}x+5\)
\(=6x^4-\dfrac{59}{12}x^3-\dfrac{67}{6}x^2+\dfrac{9}{2}x+5\)
c: \(=3x^4-\dfrac{9}{8}x^3-\dfrac{3}{4}x^2+8x^3-3x^2-6x-\dfrac{4}{3}x^2+\dfrac{1}{2}x+1\)
\(=3x^4-\dfrac{55}{8}x^3-\dfrac{25}{12}x^2-\dfrac{11}{2}x+1\)
`@` `\text {Ans}`
`\downarrow`
`P(x)+Q(x)-R(x)`
`= 5x^2 + 5x - 4 +2x^2 - 3x + 1 - (4x^2 - x + 3)`
`= 5x^2 + 5x - 4 + 2x^2 - 3x + 1 - 4x^2 + x - 3`
`= (5x^2 + 2x^2 - 4x^2) + (5x - 3x + x) + (-4 + 1 - 3)`
`= 3x^2 + 3x - 6`
Thay `x=-1/2`
`3*(-1/2)^2 + 3*(-1/2) - 6`
`= 3*1/4 - 3/2 - 6`
`= 3/4 - 3/2 - 6`
`= -3/4 - 6 = -27/4`
Vậy, khi `x=-1/2` thì GTr của đa thức là `-27/4`
P(x)+Q(x)-R(x)
=5x^2+5x-4+2x^2-3x+1-4x^2+x-3
=2x^2+3x-6(1)
Khi x=-1/2 thì (1) sẽ là 2*1/4+3*(-1/2)-6=1/2-3/2-6=-7
a: \(P\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}\)
\(Q\left(x\right)=4x^4+2x^3-5x^2-6x+\dfrac{3}{2}\)
b: \(A\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}+4x^4+2x^3-5x^2-6x+\dfrac{3}{2}=-x^4+2x^3-3x^2-14x+2\)
\(B\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}-4x^4-2x^3+5x^2+6x-\dfrac{3}{2}=-9x^4-2x^3+7x^2-2x-1\)
Nhiều nick nhỉ! :)
ai giúp cho 10 like