Cho đa thức: \(A=\dfrac{1}{2}x^2y.\left(-2xy^2\right)^2+3x^2y^3.\left(x^2y^2\right)\)
Thu gọn đa thức A rồi tính giá trị của đa thức A tại x;y thỏa mãn:
\(\left(x-2\right)^{18}+\left|y+1\right|=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
a: D=-1/3x^4y^3
Hệ số: -1/3
Biến; x^4;y^3
b: khi x=1 và y=2 thì D=-1/3*1^4*2^3=-8/3
\(A=3x^2-xy^2+4x^2y\)
Thay x = -1/7 ; y = 14 ta được
\(\dfrac{3.1}{49}-\left(-\dfrac{1}{7}\right).14^2+\dfrac{4.1}{49}.14=\dfrac{1431}{49}\)
a) \(B=-\frac{1}{2}x^3y\left(-2xy^2\right)^2\)
\(B=\left(-\frac{1}{2}.-2\right).\left(x^3.x\right)\left(y.y^2\right)^2\)
\(B=1x^4y^5\)
Hệ số: 1
Bậc: 9
Chưa định hình phần b) nó là như nào
tách sai rồi bạn ơi
phải là
\(=\dfrac{1}{2}x^2y.\left(-4\right)x^2y^4+3x^2y^4.x^2y^2\)
=\(2x^4y^5+3x^4y^5\)
=\(5x^4y^5\)
\(A=\dfrac{1}{2}x^2y.\left(-2xy^2\right)^2+2x^2y^3.\left(x^2y^2\right)\)
\(=\dfrac{1}{2}x^2y.\left(-2\right)x^2y^4+2x^4y^5\)
\(=\left(-1\right)x^4.y^5+2x^4y^5\)
\(=x^4y^5\)
Lại có : \(\left(x-2\right)^{18}+\left|y+1\right|=0\)
Mà \(\left\{{}\begin{matrix}\left(x-2\right)^{18}\ge0\\\left|y+1\right|\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^{18}=0\\\left|y+1\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Mà \(A=x^4y^5\)
\(\Leftrightarrow A=2^4.\left(-1\right)^5\)
\(\Leftrightarrow A=-16\)