chứng minh rằng thương của một số vô tỉ và một số hữu tỉ khác 0 là một số vô tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử x + y = z là một số hữu tỉ.
Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ
Hay y ∈ Q trái giả thiết y là số vô tỉ
Vậy x + y là số vô tỉ
Giả sử z = x.y là một số hữu tỉ
Suy ra y = z : x mà x ∈ Q, z ∈ Q
Suy ra y ∈ Q trái giả thiết y là số vô tỉ
Vậy xy là số vô tỉ
Giả sử x + y = z là một số hữu tỉ.
Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ
Hay y ∈ Q trái giả thiết y là số vô tỉ
Vậy x + y là số vô tỉ
Giả sử z = x.y là một số hữu tỉ
Suy ra y = z : x mà x ∈ Q, z ∈ Q
Suy ra y ∈ Q trái giả thiết y là số vô tỉ
Vậy xy là số vô tỉ
Gọi a là số vô tỉ, b là số hữu tỉ khác 0.
Tích ab là số vô tỉ vì nếu ab = b' là số hữu tỉ thì \(a=\dfrac{b'}{b}\) suy ra a là số hữu tỉ, vô lí !
Giả sử tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ.
Gọi a+b=c trong đó a,c là số hữu tỉ và b là số vô tỉ ⇒⇒ b=c-a mà a và c là các số hữu tỉ ⇒⇒ a-c là số hữu tỉ ⇒⇒ b là số hữu tỉ(trái giả thiết). Vậy giả sử sai⇒⇒ đpcm
Giả sử tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ.
Gọi a+b=c trong đó a,c là số hữu tỉ và b là số vô tỉ ⇒⇒ b=c-a mà a và c là các số hữu tỉ ⇒⇒ a-c là số hữu tỉ ⇒⇒ b là số hữu tỉ(trái giả thiết). Vậy giả sử sai⇒⇒ đpcm
Giả sử tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ.
Gọi \(a+b=c\) trong đó a,c là số hữu tỉ và b là số vô tỉ
\(\Rightarrow b=c-a\) mà aa và cc là các số hữu tỉ\(\Rightarrow a-c\) là số hữu tỉ \(\Rightarrow b\) là số hữu tỉ(trái giả thiết).
Vậy giả sử sai \(\Rightarrow\) tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.(đpcm)
Là một số vô tỉ
VD căn 2 là số vô tỉ ; 1 là hữu tỉ
căn 2 : 1 = căn 2 là số vô tỉ