cmr :1/3 + 2/3^2 +........+ 2018/3^2018 < 3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$D=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+......+\frac{2018}{4^{2018}}+\frac{2019}{4^{2019}}$
$4D=1+\frac{2}{4}+\frac{3}{4^2}+....+\frac{2018}{4^{2017}}+\frac{2019}{4^{2018}}$
Trừ theo vế:
\(3D=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{2018}}-\frac{2019}{4^{2019}}\)
\(\Rightarrow 12D=4+1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{2017}}-\frac{2019}{4^{2018}}\)
Trừ theo vế:
$9D=4-\frac{2019}{4^{2018}}+\frac{2019}{4^{2019}}-\frac{1}{4^{2018}}$
$=4-\frac{6061}{4^{2019}}< 4$
$\Rightarrow D< \frac{4}{9}<\frac{4}{8}$ hay $D< \frac{1}{2}$ (đpcm)
Ta có : \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2018}{3^{2018}}\)(1)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{2018}{3^{2019}}\)(2)
Lấy (1) trừ (2) theo vế ta có :
\(A-\frac{1}{3}A=\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2018}{3^{2018}}\right)-\left(\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{2018}{3^{2019}}\right)\)
\(\Rightarrow\frac{2}{3}A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\right)-\frac{2018}{3^{2019}}\)
Đặt B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\)
=> 3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\)
Lấy 3B trừ B theo vế ta có :
\(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\right)\)
=> 2B = \(1-\frac{1}{3^{2018}}\)
=> \(B=\frac{1}{2}-\frac{1}{3^{2018}.2}\)
Khi đó : \(\frac{2}{3}A=\frac{1}{2}-\frac{1}{3^{2018}.2}-\frac{2018}{3^{2019}}\)
\(A=\left(\frac{1}{2}-\frac{1}{3^{2018}.2}-\frac{2018}{3^{2019}}\right):\frac{2}{3}=\frac{3}{4}-\frac{1}{3^{2017}.4}-\frac{1009}{3^{2018}}=\frac{3}{4}-\left(\frac{1}{3^{2017}.\left(3+1\right)}+\frac{1009}{3^{2018}}\right)\)
\(=\frac{3}{4}-\left(\frac{1}{3^{2018}}+\frac{1}{3^{2017}}-\frac{1009}{3^{2018}}\right)=\frac{3}{4}-\left(\frac{1}{3^{2017}}-\frac{336}{3^{2017}}\right)=\frac{3}{4}+\frac{335}{3^{2017}}\)
Vì A > 0 (1)
Mặt khác\(\frac{335}{3^{2017}}< \frac{335}{1340}< \frac{1}{4}\)
=> \(\frac{335}{3^{2017}}< \frac{1}{4}\Rightarrow\frac{3}{4}+\frac{335}{3^{2017}}< \frac{1}{4}+\frac{3}{4}\Rightarrow A< 1\)(2)
Từ (1) và (2) => 0 < A < 1
=> A không phải là số nguyên
1x2x3x...2018x2019 - 1x2x3x..2018 - 1x2x3x4x...x2017x20182
= 1x2x3x...x2018x(2019 - 1 - 2018)
= 1x2x3x...x2018x0
= 0