K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

Giải thế này được không nhỉ?

Ta có \(A=n^6-n^4+2n^3+2n^2=n^4\left(n^2-1\right)+2n^2\left(n+1\right)\)

\(=\left(n+1\right)\left(n^5-n^4+2n^2\right)\)

Mặt khác do \(n\in N;n>1\) nên

\((n^5-n^4+2n^2)-\left(n+1\right)=\left(n^5-n^4\right)+\left(n^2-n\right)+\left(n^2-1\right)>0\)Do vậy \(n^5-n^4+2>n+1\)

Vậy kết luận

26 tháng 3 2018

==" thế dữ kiện ko phải số chính phương để làm cái quái gì

16 tháng 10 2017

Ta có : \(n^6-n^4+2n^3+2n^2\)

\(=\left(n^6+2n^3+1\right)-\left(n^4-2n^2+1\right)\)

\(=\left(n^3+1\right)^2-\left(n^2-1\right)^2\)

\(=\left(n^3+1-n^2+1\right)\left(n^3+1+n^2-1\right)\)

\(=n^2\left(n^3-n^2+2\right)\left(n+1\right)\)

\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

Ta thấy \(n^2\left(n+1\right)^2\) là số chính phương (1) \(n^2-2n+2=\left(n-1\right)^2+1\)ko phải là số chính phương (2)

Từ (1);(2) => \(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) ko phải là số chính phương (đpcm)

8 tháng 9 2017

n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.

3 tháng 8 2023

\(=n^2\left(n^4-n^2+2n+2\right)=\)

\(=n^2\left[n^2\left(n^2-1\right)+2\left(n+1\right)\right]=\)

\(=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]=\)

\(=n^2\left[\left(n+1\right)\left(n^3-n^2+2\right)\right]=\)

\(=n^2\left\{\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\right\}=\)

\(=n^2\left\{\left(n+1\right)\left[\left(n^3+1\right)-\left(n-1\right)\left(n+1\right)\right]\right\}=\)

\(=n^2\left\{\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n-1\right)\left(n+1\right)\right]\right\}=\)

\(=n^2\left(n+1\right)^2\left(n^2-n+1\right)-n^2\left(n+1\right)^2\left(n-1\right)=\)

\(=n^2\left(n+1\right)^2\left[\left(n^2-n+1\right)-\left(n-1\right)\right]=\)

\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) Giả sử đây là số chính phương

\(\Rightarrow n^2-2n+2\) Phải là số chính phương

Ta có

\(n^2-2n+2=\left(n-1\right)^2+1\Rightarrow n^2-2n+2>\left(n-1\right)^2\) (1)

Ta có

\(n^2-2n+2=n^2-2\left(n-1\right)\) Với n>1

\(\Rightarrow n^2-2n+2< n^2\) (2)

Từ (1) và (2)

\(\Rightarrow\left(n-1\right)^2< n^2-2n+2< n^2\)

Mà \(\left(n-1\right)^2\) và \(n^2\) là hai số chính phương liên tiếp nên \(n^2-2n+2\) không phải là số chính phương

=> Biểu thức đề bài đã cho không phải là số chính phương

 

 

4 tháng 3 2021

\(n^6-n^4+2n^3+2n^2\)

\(=\left(n^6-n^4\right)+\left(2n^3+2n^2\right)=n^4\left(n^2-1\right)+2n^2\left(n+1\right)\)

\(=n^4\left(n-1\right)\left(n+1\right)+2n^2\left(n+1\right)\)

\(=\left(n^5-n^4\right)\left(n+1\right)+2n^2\left(n+1\right)\)

\(=\left(n^5-n^4+2n^2\right)\left(n+1\right)\)

\(=n^2\left(n+1\right)\left(n^3-n^2+2\right)\)

\(=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)

\(=n^2\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n-1\right)\left(n+1\right)\right]\)

\(=n^2\left(n+1\right)\left(n+1\right)\left(n^2-n+1-n+1\right)\)

\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

Với mọi \(n\inℕ\)và \(n\ge1\), ta có:

\(n^2\left(n+1\right)^2=\left[n\left(n+1\right)\right]^2\)luôn là số chính phương.

Mà \(n^2-2n+2=\left(n-1\right)^2+1\)luôn không là số chính phương ( vì n>1; \(n\inℕ\))

Do đó  \(n^2\left(n+1\right)^2\left(n^2-2n+1\right)\)không phải là số chính phương với mọi \(n>1,n\inℕ\)

\(\Rightarrow n^6-n^4+2n^3+2n^2\)không phải là số chính phương với mọi \(n>1,n\inℕ\)

Vậy nếu \(n\inℕ,n>1\)thì số có dạng \(n^6-n^4+2n^3+2n^2\)không phải là số chính phương

4 tháng 3 2021

TÍNH CHẤT : Nếu tích của các số là một số chính phương thì mỗi số đều là một số chính phương.

DD
6 tháng 2 2021

Ta có: \(n^6-n^4+2n^3+2n^2=n^2\left(n^4-n^2+2n+2\right)=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]\)

\(=n^2\left(n+1\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left(n^3+n^2-2n^2+2\right)=n^2\left(n+1\right)\left[n^2\left(n+1\right)-2\left(n+1\right)\left(n-1\right)\right]\)\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

Để \(A\)là số chính phương thì \(n^2-2n+2\)là số chính phương. 

Ta có: \(n^2-2n+2< n^2\)(do \(n>1\)

\(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)

\(\Rightarrow\left(n-1\right)^2< n^2-2n+2< n^2\)nên \(n^2-2n+2\)không thể là số chính phương. 

Vậy \(A=n^6-n^4+2n^3+2n^2\)không là số chính phương. 

11 tháng 8 2016

\(=n^2\left(n^4-n^2+2n+2\right)\)

\(=n^2\left(n+1\right)\left(n^3-n^2+2\right)\)

=\(n^2\left(n+1\right)^2\left(n^2-n+1-n+1\right)\)

\(=n^2\left(n+1\right)^2\left(n-1\right)^2+n^2\left(n+1\right)^2\)

nhận thấy \(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)(1)(vì n>1)

vì n>1  <=> 2n>2

             <=> 2n-2>0

             => \(n^2-\left(2n-2\right)< n^2\)

hay         \(n^2-2n+2< n^2\) (2)

từ (1) và (2) =>\(\left(n-1\right)^2< n^2-2n+2< n^2\)

=> A ko là số chính phương

\(n^6-n^4+2n^3+2n^2\)

\(=n^4\left(n^2-1\right)+2n^2\left(n+1\right)\)

\(=n^4\left(n-1\right)\left(n+1\right)+2n^2\left(n+1\right)\)

\(=\left(n+1\right)\left(n^4\left(n-1\right)+2n^2\right)\)

\(=\left(n+1\right)\left(n^2\left(n^2\left(n-1\right)+2n^2\right)\right)\)

Vậy tích trên ko phải là số chính phương